Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(7): e1009789, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34320038

RESUMO

Lung-resident (LR) mesenchymal stem and stromal cells (MSCs) are key elements of the alveolar niche and fundamental regulators of homeostasis and regeneration. We interrogated their function during virus-induced lung injury using the highly prevalent respiratory syncytial virus (RSV) which causes severe outcomes in infants. We applied complementary approaches with primary pediatric LR-MSCs and a state-of-the-art model of human RSV infection in lamb. Remarkably, RSV-infection of pediatric LR-MSCs led to a robust activation, characterized by a strong antiviral and pro-inflammatory phenotype combined with mediators related to T cell function. In line with this, following in vivo infection, RSV invades and activates LR-MSCs, resulting in the expansion of the pulmonary MSC pool. Moreover, the global transcriptional response of LR-MSCs appears to follow RSV disease, switching from an early antiviral signature to repair mechanisms including differentiation, tissue remodeling, and angiogenesis. These findings demonstrate the involvement of LR-MSCs during virus-mediated acute lung injury and may have therapeutic implications.


Assuntos
Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/virologia , Pulmão/imunologia , Células-Tronco Mesenquimais/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Animais , Humanos , Pulmão/citologia , Pulmão/metabolismo , Células-Tronco Mesenquimais/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Humano/imunologia , Ovinos
2.
Antiviral Res ; 162: 44-50, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30550797

RESUMO

INTRODUCTION: Rhinovirus (RV) infection is a major cause of cystic fibrosis (CF) lung morbidity with limited therapeutic options. Various diseases involving chronic inflammatory response and infection are associated with endoplasmic reticulum (ER) stress and subsequent activation of the unfolded protein response (UPR), an adaptive response to maintain cellular homeostasis. Recent evidence suggests impaired ER stress response in CF airway epithelial cells, this might be a reason for recurrent viral infection in CF. Therefore, assuming that ER stress inducing drugs have antiviral properties, we evaluated the activation of the UPR by selected ER stress inducers as an approach to control virus replication in the CF bronchial epithelium. METHODS: We assessed the levels of UPR markers, namely the glucose-regulated protein 78 (Grp78) and the C/EBP homologous protein (CHOP), in primary CF and control bronchial epithelial cells and in a CF and control bronchial epithelial cell line before and after infection with RV. The cells were also pretreated with ER stress-inducing drugs and RV replication and shedding was measured by quantitative RT-PCR and by a TCID50 assay, respectively. Cell death was assessed by a lactate dehydrogenate (LDH) activity test in supernatants. RESULTS: We observed a significantly impaired induction of Grp78 and CHOP in CF compare to control cells following RV infection. The ER stress response could be significantly induced in CF cells by pharmacological ER stress inducers Brefeldin A, Tunicamycin, and Thapsigargin. The chemical induction of the UPR pathway prior to RV infection of CF and control cells reduced viral replication and shedding by up to two orders of magnitude and protected cells from RV-induced cell death. CONCLUSION: RV infection causes an impaired activation of the UPR in CF cells. Rescue of the ER stress response by chemical ER stress inducers reduced significantly RV replication in CF cells. Thus, pharmacological modulation of the UPR might represent a strategy to control respiratory virus replication in the CF bronchial epithelium.


Assuntos
Antivirais/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Rhinovirus/efeitos dos fármacos , Resposta a Proteínas não Dobradas , Replicação Viral/efeitos dos fármacos , Brônquios/citologia , Brônquios/virologia , Estudos de Casos e Controles , Células Cultivadas , Criança , Fibrose Cística/complicações , Chaperona BiP do Retículo Endoplasmático , Células Epiteliais/virologia , Humanos , Mucosa Respiratória/citologia , Mucosa Respiratória/virologia , Rhinovirus/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA