Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 8(4): 443-460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561490

RESUMO

Allogeneic mesenchymal stromal cells (MSCs) are a safe treatment option for many disorders of the immune system. However, clinical trials using MSCs have shown inconsistent therapeutic efficacy, mostly owing to MSCs providing insufficient immunosuppression in target tissues. Here we show that antigen-specific immunosuppression can be enhanced by genetically modifying MSCs with chimaeric antigen receptors (CARs), as we show for E-cadherin-targeted CAR-MSCs for the treatment of graft-versus-host disease in mice. CAR-MSCs led to superior T-cell suppression and localization to E-cadherin+ colonic cells, ameliorating the animals' symptoms and survival rates. On antigen-specific stimulation, CAR-MSCs upregulated the expression of immunosuppressive genes and receptors for T-cell inhibition as well as the production of immunosuppressive cytokines while maintaining their stem cell phenotype and safety profile in the animal models. CAR-MSCs may represent a widely applicable therapeutic technology for enhancing immunosuppression.


Assuntos
Doença Enxerto-Hospedeiro , Terapia de Imunossupressão , Células-Tronco Mesenquimais , Receptores de Antígenos Quiméricos , Animais , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Terapia de Imunossupressão/métodos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Doença Enxerto-Hospedeiro/imunologia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Linfócitos T/imunologia , Caderinas/metabolismo , Camundongos Endogâmicos C57BL , Citocinas/metabolismo
2.
Sci Adv ; 8(34): eabm8563, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36001674

RESUMO

Most gene-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are nonreplicating vectors. They deliver the gene or messenger RNA to the cell to express the spike protein but do not replicate to amplify antigen production. This study tested the utility of replication in a vaccine by comparing replication-defective adenovirus (RD-Ad) and replicating single-cycle adenovirus (SC-Ad) vaccines that express the SARS-CoV-2 spike protein. SC-Ad produced 100 times more spike protein than RD-Ad and generated significantly higher antibodies against the spike protein than RD-Ad after single immunization of Ad-permissive hamsters. SC-Ad-generated antibodies climbed over 14 weeks after single immunization and persisted for more than 10 months. When the hamsters were challenged 10.5 months after single immunization, a single intranasal or intramuscular immunization with SC-Ad-Spike reduced SARS-CoV-2 viral loads and damage in the lungs and preserved body weight better than vaccination with RD-Ad-Spike. This demonstrates the utility of harnessing replication in vaccines to amplify protection against infectious diseases.

3.
Sci Transl Med ; 14(640): eabn2231, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35417192

RESUMO

Oncolytic viruses (OVs) encoding a variety of transgenes have been evaluated as therapeutic tools to increase the efficacy of chimeric antigen receptor (CAR)-modified T cells in the solid tumor microenvironment (TME). Here, using systemically delivered OVs and CAR T cells in immunocompetent mouse models, we have defined a mechanism by which OVs can potentiate CAR T cell efficacy against solid tumor models of melanoma and glioma. We show that stimulation of the native T cell receptor (TCR) with viral or virally encoded epitopes gives rise to enhanced proliferation, CAR-directed antitumor function, and distinct memory phenotypes. In vivo expansion of dual-specific (DS) CAR T cells was leveraged by in vitro preloading with oncolytic vesicular stomatitis virus (VSV) or reovirus, allowing for a further in vivo expansion and reactivation of T cells by homologous boosting. This treatment led to prolonged survival of mice with subcutaneous melanoma and intracranial glioma tumors. Human CD19 CAR T cells could also be expanded in vitro with TCR reactivity against viral or virally encoded antigens and was associated with greater CAR-directed cytokine production. Our data highlight the utility of combining OV and CAR T cell therapy and show that stimulation of the native TCR can be exploited to enhance CAR T cell activity and efficacy in mice.


Assuntos
Glioma , Melanoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Receptores de Antígenos Quiméricos , Animais , Glioma/terapia , Imunoterapia Adotiva , Melanoma/terapia , Camundongos , Vírus Oncolíticos/fisiologia , Receptores de Antígenos de Linfócitos T , Linfócitos T , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA