Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Nucleic Acids Res ; 49(20): 11690-11707, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34725692

RESUMO

Loss of telomeric DNA leads to telomere uncapping, which triggers a persistent, p53-centric DNA damage response that sustains a stable senescence-associated proliferation arrest. Here, we show that in normal cells telomere uncapping triggers a focal telomeric DNA damage response accompanied by a transient cell cycle arrest. Subsequent cell division with dysfunctional telomeres resulted in sporadic telomeric sister chromatid fusions that gave rise to next-mitosis genome instability, including non-telomeric DNA lesions responsible for a stable, p53-mediated, senescence-associated proliferation arrest. Unexpectedly, the blocking of Rad51/RPA-mediated homologous recombination, but not non-homologous end joining (NHEJ), prevented senescence despite multiple dysfunctional telomeres. When cells approached natural replicative senescence, interphase senescent cells displayed genome instability, whereas near-senescent cells that underwent mitosis despite the presence of uncapped telomeres did not. This suggests that these near-senescent cells had not yet acquired irreversible telomeric fusions. We propose a new model for telomere-initiated senescence where tolerance of telomere uncapping eventually results in irreversible non-telomeric DNA lesions leading to stable senescence. Paradoxically, our work reveals that senescence-associated tumor suppression from telomere shortening requires irreversible genome instability at the single-cell level, which suggests that interventions to repair telomeres in the pre-senescent state could prevent senescence and genome instability.


Assuntos
Instabilidade Genômica , Recombinação Homóloga , Encurtamento do Telômero/genética , Células Cultivadas , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Humanos , Rad51 Recombinase/metabolismo
3.
Cells ; 9(7)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630281

RESUMO

Cellular senescence is a natural tumor suppression mechanism defined by a stable proliferation arrest. In the context of cancer treatment, cancer cell therapy-induced senescence (TIS) is emerging as an omnipresent cell fate decision that can be pharmacologically targeted at the molecular level to enhance the beneficial aspects of senescence. In prostate cancer (PCa), TIS has been reported using multiple different model systems, and a more systematic analysis would be useful to identify relevant senescence manipulation molecular targets. Here we show that a spectrum of PCa senescence phenotypes can be induced by clinically relevant therapies. We found that DNA damage inducers like irradiation and poly (ADP-ribose) polymerase1 (PARP) inhibitors triggered a stable PCa-TIS independent of the p53 status. On the other hand, enzalutamide triggered a reversible senescence-like state that lacked evidence of cell death or DNA damage. Using a small senolytic drug panel, we found that senescence inducers dictated senolytic sensitivity. While Bcl-2 family anti-apoptotic inhibitor were lethal for PCa-TIS cells harboring evidence of DNA damage, they were ineffective against enzalutamide-TIS cells. Interestingly, piperlongumine, which was described as a senolytic, acted as a senomorphic to enhance enzalutamide-TIS proliferation arrest without promoting cell death. Overall, our results suggest that TIS phenotypic hallmarks need to be evaluated in a context-dependent manner because they can vary with senescence inducers, even within identical cancer cell populations. Defining this context-dependent spectrum of senescence phenotypes is key to determining subsequent molecular strategies that target senescent cancer cells.


Assuntos
Antineoplásicos/farmacologia , Senescência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Feniltioidantoína/análogos & derivados , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzamidas , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Nitrilas , Feniltioidantoína/farmacologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Neoplasias da Próstata/metabolismo , Radiação
4.
Autophagy ; 16(11): 2004-2016, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31931659

RESUMO

Sustained macroautophagy/autophagy favors the differentiation of fibroblasts into myofibroblasts. Cellular senescence, another means of responding to long-term cellular stress, has also been linked to myofibroblast differentiation and fibrosis. Here, we evaluate the relationship between senescence and myofibroblast differentiation in the context of sustained autophagy. We analyzed markers of cell cycle arrest/senescence in fibroblasts in vitro, where autophagy was triggered by serum starvation (SS). Autophagic fibroblasts expressed the senescence biomarkers CDKN1A/p21 and CDKN2A/p16 and exhibited increased senescence-associated GLB1/beta-galactosidase activity. Inhibition of autophagy in serum-starved fibroblasts with 3-methyladenine, LY294002, or ATG7 (autophagy related 7) silencing prevented the expression of senescence-associated markers. Similarly, suppressing MTORC2 activation using rapamycin or by silencing RICTOR also prevented senescence hallmarks. Immunofluorescence microscopy showed that senescence and myofibroblast differentiation were induced in different cells, suggesting mutually exclusive activation of senescence and myofibroblast differentiation. Reactive oxygen species (ROS) are known inducers of senescence and exposing fibroblasts to ROS scavengers decreased ROS production during SS, inhibited autophagy, and significantly reduced the expression of senescence and myofibroblast differentiation markers. ROS scavengers also curbed the AKT1 phosphorylation at Ser473, an MTORC2 target, establishing the importance of ROS in fueling MTORC2 activation. Inhibition of senescence by shRNA to TP53/p53 and shRNA CDKN2A/p16 increased myofibroblast differentiation, suggesting a negative feedback loop of senescence on autophagy-induced myofibroblast differentiation. Collectively, our results identify ROS as central inducers of MTORC2 activation during chronic autophagy, which in turn fuels senescence activation and myofibroblast differentiation in distinct cellular subpopulations. Abbreviations: 3-MA: 3-methyladenine; ACTA2: actin, alpha 2, smooth muscle, aorta; AKT1: AKT serine/threonine kinase 1; p-AKT1: AKT1 Ser473 phosphorylation; t-AKT1: total AKT serine/threonine kinase 1; ATG4A: autophagy related 4A cysteine peptidase; ATG7: autophagy gene 7; C12FDG: 5-dodecanoylaminofluorescein Di-ß-D-Galactopyranoside; CDKN1A: cyclin dependent kinase inhibitor 1A; CDKN2A: cyclin dependent kinase inhibitor 2A; Ctl: control; DAPI: 4',6-diamidino-2-phenylindole, dilactate; ECM: extracellular matrix; GSH: L-glutathione reduced; H2O2: hydrogen peroxide; HLF: adult human lung fibroblasts; Ho: Hoechst 33342 (2'-[4-ethoxyphenyl]-5-[4-methyl-1-piperazinyl]-2.5'-bi-1H-benzimidazole); HSC: hepatic stellate cells; LY: LY294002; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MTORC1/2: mechanistic target of rapamycin kinase complex 1/2; N: normal growth medium; NAC: N-acetyl-L-cysteine; PBS: phosphate-buffered saline; PDGFA: platelet derived growth factor subunit A; PRKCA/PKCα: protein kinase C alpha; PtdIns3K: class III phosphatidylinositol 3-kinase; PTEN: phosphatase and tensin homolog; R: rapamycin; RICTOR: RPTOR independent companion of MTOR complex 2; ROS: reactive oxygen species; RPTOR: regulatory associated protein of MTOR complex 1; SA-GLB1/ß-gal: senescence-associated galactosidase beta 1; SGK1: serum/glucocorticoid regulated kinase 1; shRNA: short hairpin RNA; siCtl: control siRNA; siRNA: small interfering RNA; SQSTM1: sequestosome 1; SS: serum-free (serum starvation) medium; TP53: tumor protein p53; TUBA: tubulin alpha; V: vehicle.


Assuntos
Autofagia/fisiologia , Fibroblastos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Humanos , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sirolimo/farmacologia
5.
Nat Commun ; 10(1): 2556, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186408

RESUMO

Senescence is a tumor suppression mechanism defined by stable proliferation arrest. Here we demonstrate that the known synthetic lethal interaction between poly(ADP-ribose) polymerase 1 inhibitors (PARPi) and DNA repair triggers p53-independent ovarian cancer cell senescence defined by senescence-associated phenotypic hallmarks including DNA-SCARS, inflammatory secretome, Bcl-XL-mediated apoptosis resistance, and proliferation restriction via Chk2 and p21 (CDKN1A). The concept of senescence as irreversible remains controversial and here we show that PARPi-senescent cells re-initiate proliferation upon drug withdrawal, potentially explaining the requirement for sustained PARPi therapy in the clinic. Importantly, PARPi-induced senescence renders ovarian and breast cancer cells transiently susceptible to second-phase synthetic lethal approaches targeting the senescence state using senolytic drugs. The combination of PARPi and a senolytic is effective in preclinical models of ovarian and breast cancer suggesting that coupling these synthetic lethalities provides a rational approach to their clinical use and may together be more effective in limiting resistance.


Assuntos
Proliferação de Células/efeitos dos fármacos , Senescência Celular , Reparo do DNA , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Mutações Sintéticas Letais , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA