Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharm Anal ; 14(2): 196-210, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38464782

RESUMO

Adjuvant chemotherapy improves the survival outlook for patients undergoing operations for lung metastases caused by colorectal cancer (CRC). However, a multidisciplinary approach that evaluates several factors related to patient and tumor characteristics is necessary for managing chemotherapy treatment in metastatic CRC patients with lung disease, as such factors dictate the timing and drug regimen, which may affect treatment response and prognosis. In this study, we explore the potential of spatial metabolomics for evaluating metabolic phenotypes and therapy outcomes during the local delivery of the anticancer drug, oxaliplatin, to the lung. 12 male Yorkshire pigs underwent a 3 h left lung in vivo lung perfusion (IVLP) with various doses of oxaliplatin (7.5, 10, 20, 40, and 80 mg/L), which were administered to the perfusion circuit reservoir as a bolus. Biocompatible solid-phase microextraction (SPME) microprobes were combined with global metabolite profiling to obtain spatiotemporal information about the activity of the drug, determine toxic doses that exceed therapeutic efficacy, and conduct a mechanistic exploration of associated lung injury. Mild and subclinical lung injury was observed at 40 mg/L of oxaliplatin, and significant compromise of the hemodynamic lung function was found at 80 mg/L. This result was associated with massive alterations in metabolic patterns of lung tissue and perfusate, resulting in a total of 139 discriminant compounds. Uncontrolled inflammatory response, abnormalities in energy metabolism, and mitochondrial dysfunction next to accelerated kynurenine and aldosterone production were recognized as distinct features of dysregulated metabolipidome. Spatial pharmacometabolomics may be a promising tool for identifying pathological responses to chemotherapy.

2.
Front Cell Dev Biol ; 10: 928152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092704

RESUMO

Adjuvant chemotherapy after pulmonary metastasectomy for colorectal cancer may reduce recurrence and improve survival rates; however, the benefits of this treatment are limited by the significant side effects that accompany it. The development of a novel in vivo lung perfusion (IVLP) platform would permit the localized delivery of high doses of chemotherapeutic drugs to target residual micrometastatic disease. Nonetheless, it is critical to continuously monitor the levels of such drugs during IVLP administration, as lung injury can occur if tissue concentrations are not maintained within the therapeutic window. This paper presents a simple chemical-biopsy approach based on sampling with a small nitinol wire coated with a sorbent of biocompatible morphology and evaluates its applicability for the near-real-time in vivo determination of oxaliplatin (OxPt) in a 72-h porcine IVLP survival model. To this end, the pigs underwent a 3-h left lung IVLP with 3 doses of the tested drug (5, 7.5, and 40 mg/L), which were administered to the perfusion circuit reservoir as a bolus after a full perfusion flow had been established. Along with OxPt levels, the biocompatible solid-phase microextraction (SPME) probes were employed to profile other low-molecular-weight compounds to provide spatial and temporal information about the toxicity of chemotherapy or lung injury. The resultant measurements revealed a rather heterogeneous distribution of OxPt (over the course of IVLP) in the two sampled sections of the lung. In most cases, the OxPt concentration in the lung tissue peaked during the second hour of IVLP, with this trend being more evident in the upper section. In turn, OxPt in supernatant samples represented ∼25% of the entire drug after the first hour of perfusion, which may be attributable to the binding of OxPt to albumin, its sequestration into erythrocytes, or its rapid nonenzymatic biotransformation. Additionally, the Bio-SPME probes also facilitated the extraction of various endogenous molecules for the purpose of screening biochemical pathways affected during IVLP (i.e., lipid and amino acid metabolism, steroidogenesis, or purine metabolism). Overall, the results of this study demonstrate that the minimally invasive SPME-based sampling approach presented in this work can serve as (pre)clinical and precise bedside medical tool.

3.
Front Immunol ; 13: 859506, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812438

RESUMO

Ex situ heart perfusion (ESHP) was developed to preserve and evaluate donated hearts in a perfused beating state. However, myocardial function declines during ESHP, which limits the duration of perfusion and the potential to expand the donor pool. In this research, we combine a novel, minimally-invasive sampling approach with comparative global metabolite profiling to evaluate changes in the metabolomic patterns associated with declines in myocardial function during ESHP. Biocompatible solid-phase microextraction (SPME) microprobes serving as chemical biopsy were used to sample heart tissue and perfusate in a translational porcine ESHP model and a small cohort of clinical cases. In addition, six core-needle biopsies of the left ventricular wall were collected to compare the performance of our SPME sampling method against that of traditional tissue-collection. Our state-of-the-art metabolomics platform allowed us to identify a large number of significantly altered metabolites and lipid species that presented comparable profile of alterations to conventional biopsies. However, significant discrepancies in the pool of identified analytes using two sampling methods (SPME vs. biopsy) were also identified concerning mainly compounds susceptible to dynamic biotransformation and most likely being a result of low-invasive nature of SPME. Overall, our results revealed striking metabolic alterations during prolonged 8h-ESHP associated with uncontrolled inflammation not counterbalanced by resolution, endothelial injury, accelerated mitochondrial oxidative stress, the disruption of mitochondrial bioenergetics, and the accumulation of harmful lipid species. In conclusion, the combination of perfusion parameters and metabolomics can uncover various mechanisms of organ injury and recovery, which can help differentiate between donor hearts that are transplantable from those that should be discarded.


Assuntos
Transplante de Coração , Animais , Transplante de Coração/métodos , Humanos , Lipídeos , Miocárdio/patologia , Perfusão/métodos , Suínos , Doadores de Tecidos
4.
Sci Rep ; 11(1): 22428, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789766

RESUMO

Epithelial ovarian cancer (EOC) is the most common cause of death from gynecological cancer. The outcomes of EOC are complicated, as it is often diagnosed late and comprises several heterogenous subtypes. As such, upfront treatment can be highly challenging. Although many significant advances in EOC management have been made over the past several decades, further work must be done to develop early detection tools capable of distinguishing between the various EOC subtypes. In this paper, we present a sophisticated analytical pipeline based on solid-phase microextraction (SPME) and three orthogonal LC/MS acquisition modes that facilitates the comprehensive mapping of a wide range of analytes in serum samples from patients with EOC. PLS-DA multivariate analysis of the metabolomic data was able to provide clear discrimination between all four main EOC subtypes: serous, endometrioid, clear cell, and mucinous carcinomas. The prognostic performance of discriminative metabolites and lipids was confirmed via multivariate receiver operating characteristic (ROC) analysis (AUC value > 88% with 20 features). Further pathway analysis using the top 57 dysregulated metabolic features showed distinct differences in amino acid, lipid, and steroids metabolism among the four EOC subtypes. Thus, metabolomic profiling can serve as a powerful tool for complementing histology in classifying EOC subtypes.


Assuntos
Carcinoma Epitelial do Ovário/sangue , Carcinoma Epitelial do Ovário/classificação , Espectrometria de Massas/métodos , Metaboloma , Metabolômica/métodos , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/classificação , Fenótipo , Microextração em Fase Sólida/métodos , Biomarcadores Tumorais/sangue , Carcinoma Epitelial do Ovário/patologia , Cromatografia Líquida/métodos , Feminino , Humanos , Neoplasias Ovarianas/patologia , Projetos Piloto , Prognóstico , Sensibilidade e Especificidade
5.
Nutrients ; 13(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803343

RESUMO

Oxidative stress and dysregulated adipocytokine secretion accompanying hypertrophied adipose tissue induce chronic inflammation, which leads to vascular endothelial dysfunction. The present study investigated the ability of anthocyanin (ACN) and non-anthocyanin polyphenol (PP) fractions from lingonberry fruit to mitigate adipose tissue hypertrophy and endothelial dysfunction using 3T3-L1 adipocytes and human umbilical vein endothelial cells (HUVECs). This study showed that the PP fraction decreased intracellular ROS generation in hypertrophied adipocytes by enhancing antioxidant enzyme expression (SOD2) and inhibiting oxidant enzyme expression (NOX4, iNOS). Moreover, PP and ACN fractions reduced triglyceride content in adipocytes accompanied by downregulation of the expression of lipogenic genes such as aP2, FAS, and DAGT1. Treatment with both fractions modulated the mRNA expression and protein secretion of key adipokines in hypertrophied adipocytes. Expression and secretion of leptin and adiponectin were, respectively, down- and upregulated. Furthermore, PP and ACN fractions alleviated the inflammatory response in TNF-α-induced HUVECs by inhibiting the expression of pro-inflammatory genes (IL-6, IL-1ß) and adhesion molecules (VCAM-1, ICAM-1, SELE). The obtained results suggest that consuming polyphenol-rich lingonberry fruit may help prevent and treat obesity and endothelial dysfunction due to their antioxidant and anti-inflammatory actions.


Assuntos
Adipócitos/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Vaccinium vitis-Idaea/química , Células 3T3-L1 , Adipocinas/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Antocianinas/farmacologia , Antioxidantes/farmacologia , Frutas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Hipertrofia , Camundongos , Obesidade/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo
6.
J Pharm Anal ; 11(1): 37-47, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33717610

RESUMO

Development of a novel in vivo lung perfusion (IVLP) procedure allows localized delivery of high-dose doxorubicin (DOX) for targeting residual micrometastatic disease in the lungs. However, DOX delivery via IVLP requires careful monitoring of drug level to ensure tissue concentrations of this agent remain in the therapeutic window. A small dimension nitinol wire coated with a sorbent of biocompatible morphology (Bio-SPME) has been clinically evaluated for in vivo lung tissue extraction and determination of DOX and its key metabolites. The in vivo Bio-SPME-IVLP experiments were performed on pig model over various (150 and 225 mg/m2) drug doses, and during human clinical trial. Two patients with metastatic osteosarcoma were treated with a single 5 and 7 µg/mL (respectively) dose of DOX during a 3-h IVLP. In both pig and human cases, DOX tissue levels presented similar trends during IVLP. Human lung tissue concentrations of drug ranged between 15 and 293 µg/g over the course of the IVLP procedure. In addition to DOX levels, Bio-SPME followed by liquid chromatography-mass spectrometry analysis generated 64 metabolic features during endogenous metabolite screening, providing information about lung status during drug administration. Real-time monitoring of DOX levels in the lungs can be performed effectively throughout the IVLP procedure by in vivo Bio-SPME chemical biopsy approach. Bio-SPME also extracted various endogenous molecules, thus providing a real-time snapshot of the physiology of the cells, which might assist in the tailoring of personalized treatment strategy.

7.
J Transl Med ; 19(1): 6, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407555

RESUMO

BACKGROUND: Dyslipidaemia is a major risk factor for atherosclerosis and cardiovascular diseases. The molecular mechanisms that translate dyslipidaemia into atherogenesis and reliable markers of its progression are yet to be fully elucidated. To address this issue, we conducted a comprehensive metabolomic and proteomic analysis in an experimental model of dyslipidaemia and in patients with familial hypercholesterolemia (FH). METHODS: Liquid chromatography/mass spectrometry (LC/MS) and immunoassays were used to find out blood alterations at metabolite and protein levels in dyslipidaemic ApoE-/-/LDLR-/- mice and in FH patients to evaluate their human relevance. RESULTS: We identified 15 metabolites (inhibitors and substrates of nitric oxide synthase (NOS), low-molecular-weight antioxidants (glutamine, taurine), homocysteine, methionine, 1-methylnicotinamide, alanine and hydroxyproline) and 9 proteins (C-reactive protein, proprotein convertase subtilisin/kexin type 9, apolipoprotein C-III, soluble intercellular adhesion molecule-1, angiotensinogen, paraoxonase-1, fetuin-B, vitamin K-dependent protein S and biglycan) that differentiated FH patients from healthy controls. Most of these changes were consistently found in dyslipidaemic mice and were further amplified if mice were fed an atherogenic (Western or low-carbohydrate, high-protein) diet. CONCLUSIONS: The alterations highlighted the involvement of an immune-inflammatory response system, oxidative stress, hyper-coagulation and impairment in the vascular function/regenerative capacity in response to dyslipidaemia that may also be directly engaged in development of atherosclerosis. Our study further identified potential biomarkers for an increased risk of atherosclerosis that may aid in clinical diagnosis or in the personalized treatment.


Assuntos
Aterosclerose , Dislipidemias , Hiperlipoproteinemia Tipo II , Animais , Aterosclerose/complicações , Dislipidemias/complicações , Humanos , Camundongos , Pró-Proteína Convertase 9 , Proteômica , Receptores de LDL
8.
J Thorac Cardiovasc Surg ; 161(5): 1626-1635, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32354628

RESUMO

OBJECTIVES: To determine the dose-limiting toxicity of oxaliplatin chemotherapy delivered by in vivo lung perfusion (IVLP). To allow assessment of subacute toxicities, we aimed to develop a 72-hour porcine IVLP survival model. METHODS: In total, 12 Yorkshire male pigs were used. Left lung IVLP was performed for 3 hours. At 72 hours postoperatively, computed tomography imaging of the lungs was performed before the pigs were killed. Lung physiology, airway dynamics, gross appearance, and histology were assessed before and during IVLP, at reperfusion, and when the pigs were euthanized. An accelerated titration dose-escalation study design was employed whereby oxaliplatin doses were sequentially doubled provided no clinically significant toxicity was observed, defined as an arterial partial pressure of oxygen to fraction of inspired oxygen ratio <300 mm Hg or severe acute lung injury on biopsy. RESULTS: After an initial training phase, no mortality or adverse events related to the procedure were observed. There was no lung injury observed at the time of IVLP for any case. At sacrifice, clinically significant lung injury was observed at 80 mg/L oxaliplatin, with an arterial partial pressure of oxygen to fraction of inspired oxygen ratio of 112 mm Hg. Mild and subclinical lung injury was observed at 40 mg/L, with this dose being repeated to confirm safety. CONCLUSIONS: A stable and reproducible porcine 3-day IVLP survival model was established that will allow toxicity assessment of agents delivered by IVLP. Oxaliplatin delivered by IVLP showed delayed-onset toxicity that was not apparent at the time of reperfusion, with a maximal-tolerated dose of 40 mg/L. This information will inform initiation of a clinical trial examining IVLP delivery of oxaliplatin at our institution.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Pulmão/efeitos dos fármacos , Oxaliplatina/toxicidade , Perfusão/métodos , Animais , Modelos Animais de Doenças , Pulmão/fisiopatologia , Masculino , Suínos , Testes de Toxicidade Subaguda
9.
Angew Chem Int Ed Engl ; 59(6): 2392-2398, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31697450

RESUMO

Oxylipins are key lipid mediators of important brain processes, including pain, sleep, oxidative stress, and inflammation. For the first time, an in-depth profile of up to 52 oxylipins can be obtained from the brains of awake moving animals using in vivo solid-phase microextraction (SPME) chemical biopsy tool in combination with liquid chromatography-high resolution mass spectrometry. Among these, 23 oxylipins are detectable in the majority of healthy wildtype samples. This new approach successfully eliminates the changes in oxylipin concentrations routinely observed during the analysis of post-mortem samples, allows time-course monitoring of their concentrations with high spatial resolution in specific brain regions of interest, and can be performed using the same experimental set-up as in vivo microdialysis (MD) thus providing a new and exciting tool in neuroscience and drug discovery.


Assuntos
Encéfalo/metabolismo , Oxilipinas/análise , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Oxilipinas/química , Oxilipinas/isolamento & purificação , Ratos , Microextração em Fase Sólida , Vigília
10.
Foods ; 8(8)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398785

RESUMO

Oxidative stress and inflammation in hypertrophied adipose tissue with excessive fat accumulation play a crucial role in the development of obesity and accompanying metabolic dysfunctions. This study demonstrated the capacity of elderberry fruit (EDB) extract to decrease the elevated production of reactive oxygen species in hypertrophied 3T3-L1 adipocytes. Treatment with the EDB extract resulted in modulation of mRNA expression and protein secretion of key adipokines in hypertrophied adipocytes. Expression of leptin and adiponectin was, respectively, down- and up-regulated. Moreover, glucose uptake stimulation was noticed in mature adipocytes, both sensitive to insulin and insulin resistant. This may suggest a positive effect of EDB extract on insulin resistance status. The extract was also found to alleviate the inflammatory response in activated RAW 264.7 macrophages by down-regulating the expression of proinflammatory genes (TNF-α, IL-6, COX-2, iNOS) and suppressing the enhanced production of inflammatory mediators (TNF-α, IL-6, PGE2, NO). In vitro experiments showed that the EDB extract could inhibit digestive enzymes, including α-amylase, α-glucosidase, and pancreatic lipase, leading to reduced intestinal absorption of dietary lipids and carbohydrates. Further in vivo studies could be postulated to support EDB as a functional food component for the prevention and treatment of obesity and metabolic-immune comorbidities.

11.
Talanta ; 182: 492-499, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29501184

RESUMO

Several proteins such as membrane-associated ectonucleotidases: ecto-5'-nucleotidase (E5NT/CD73) and ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1/CD39), and intracellular heme oxygenase-1 (HO-1) may contribute to protection from inflammation-related diseases such as calcific aortic valve stenosis (CAS). Accurate quantification of these proteins could contribute to better understanding of the disease mechanisms and identification of biomarkers. This report presents development and validation of quantification method for E5NT/CD73, ENTPD1/CD39 and HO-1. The multiplexed targeted proteomic assay involved antibody-free, multiple-enzyme digestion, filter-assisted sample preparation (MED-FASP) strategy and a nanoflow liquid chromatography/mass spectrometry under multiple reaction monitoring mode (LC-MRM/MS). The method developed presented high sensitivity (LLOQ of 5 pg/mL for each of the analytes) and accuracy that ranged from 92.0% to 107.0%, and was successfully applied for the absolute quantification of HO-1, CD39 and CD73 proteins in homogenates of human calcified and non-calcified valves. The absolute CD39 and CD73 concentrations were lower in calcified aortic valves (as compared to non-stenotic ones) and were found to be: 1.16 ± 0.39 vs. 3.15 ± 0.37 pmol/mg protein and 1.94 ± 0.21 vs. 2.39 ± 0.39 pmol/mg protein, respectively, while the quantity of HO-1 was elevated in calcified valves (10.72 ± 1.18 vs. 4.28 ± 0.42 amol/mg protein). These results were consistent but more reproducible as compared to immunoassays. In conclusion, multiplexed quantification of HO-1, CD39 and CD73 proteins by LC-MRM/MS works well in challenging human tissues such as aortic valves. This analysis confirmed the relevance of these proteins in pathogenesis of CAS and could be extended to other biomedical investigations.


Assuntos
5'-Nucleotidase/análise , Estenose da Valva Aórtica/genética , Valva Aórtica/patologia , Apirase/análise , Calcinose/genética , Filtração/métodos , Heme Oxigenase-1/análise , Proteômica/métodos , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Adulto , Idoso , Valva Aórtica/química , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Apirase/genética , Apirase/metabolismo , Biomarcadores/metabolismo , Calcinose/diagnóstico , Calcinose/metabolismo , Calcinose/patologia , Estudos de Casos e Controles , Cromatografia Líquida , Feminino , Proteínas Ligadas por GPI/análise , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteólise , Manejo de Espécimes/métodos , Espectrometria de Massas em Tandem
12.
PLoS One ; 12(11): e0188583, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29182628

RESUMO

Berries are a rich source of antioxidants and phytochemicals that have received considerable interest for their possible relations to human health. In this study, the anti-adipogenic effect of polyphenol-rich extract obtained from chokeberry Aronia melanocarpa (Michx.) Elliot, raspberry Rubus idaeus L., bilberry Vaccinium myrtillus L. and cranberry Vaccinium macrocarpon Aiton fruits and its underlying molecular mechanisms were investigated in differentiated 3T3-L1 adipose cells. Treatment with the extract (25-100 µg/mL) significantly decreased lipid accumulation and reactive oxygen species generation in adipocytes without showing cytotoxicity. Real-time PCR analysis revealed that the extract at a concentration of 100 µg/mL suppressed adipogenesis and lipogenesis via the down-regulation of PPARγ (67%), C/EBPα (72%), SREBP1 (62%), aP2 (24%), FAS (32%), LPL (40%), HSL (39%), and PLIN1 (32%) gene expression. Moreover, the extract significantly increased the expression of adiponectin (4.4-fold) and decreased leptin expression (90%) and respectively regulated the production of these adipokines in 3T3-L1 adipocytes. The obtained results suggest that the analyzed extract may be a promising source of bioactive compounds that support long-term weight maintenance and promote the effective management of obesity.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Rosaceae/química , Rubus/química , Vaccinium myrtillus/química , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Camundongos
13.
J Chromatogr A ; 1517: 66-78, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851525

RESUMO

Calcific aortic valve stenosis (CAS) increasingly affects our ageing population, but the mechanisms of the disease and its biomarkers are not well established. Recently, plasma amino acid-related metabolite (AA) profiling has attracted attention in studies on pathology and development of biomarkers of cardiovascular diseases, but has not been studied in CAS. To evaluate the potential relationship between CAS and AA metabolome, a new ion-pairing reversed-phase liquid chromatography-tandem mass spectrometry (IP-RPLC-MS/MS) method has been developed and validated for simultaneous determination of 43 AAs in plasma of stenotic patients and age-matched control subjects. Furthermore, untargeted mass spectrometry-based proteomic analysis and confirmatory ELISA assays were performed. The method developed offered high accuracy (intra-assay imprecision averaged 4.4% for all compounds) and sensitivity (LOQ within 0.01-0.5µM). We found that 22 AAs and three AA ratios significantly changed in the CAS group as compared to control. The most pronounced differences were observed in urea cycle-related AAs and branched-chain AA (BCAA)-related AAs. The contents of asymmetric dimethylarginine (ADMA) and its monomethylated derivative (NMMA) were increased by 30-64% with CAS. The arginine/ADMA and Fischer's ratios as well as arginine, homoarginine, ADMA, symmetric dimethylarginine, hydroxyproline, betaine and 3-methylhistidine correlated with cardiac function-related parameters and concomitant systemic factors in the CAS patients. The results of proteomic analysis were consistent with involvement of inflammation, lipid abnormalities, hemostasis and extracellular matrix remodeling in CAS. In conclusion, changes in plasma AA profile and protein pattern that we identified in CAS provide information relevant to pathomechanisms and may deliver new biomarkers of the disease.


Assuntos
Estenose da Valva Aórtica/sangue , Valva Aórtica/patologia , Biomarcadores/sangue , Análise Química do Sangue/métodos , Calcinose/sangue , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Cromatografia de Fase Reversa , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Metilistidinas/sangue , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
14.
Food Funct ; 7(1): 557-64, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26613574

RESUMO

This study was designed to evaluate the anti-inflammatory effects of purple carrot anthocyanins (PCA) with respect to gut inflammation, simulated in a co-culture system consisting of intestinal epithelial Caco-2 cells and RAW264.7 macrophages. The obtained results indicated that PCA extract down-regulates the mRNA expression of proinflammatory interleukins Il-1ß (↓91%) and Il-6 (↓69%) as well as inflammatory mediators, such as cyclooxygenase-2 (Cox-2) and inducible nitric oxide synthase (iNos), in lipopolysaccharide-activated RAW264.7 cells. The decrease in the generation of prostaglandin E2 (↓48%) and nitric oxide (↓26%) was observed as a result of the inhibition of Cox-2 (↓25%) and iNos (↓12%) mRNA expressions, respectively. Moreover, the PCA reduced mRNA expression (↓40%) and production (↓17%) of IL-8 in intestinal cells. The anti-inflammatory effect of PCA was contributed to the protection of the intestinal barrier, which was disrupted upon the stimulation of macrophages. These findings may provide preliminary justification for the use of PCA in further studies focused on the prevention and therapy supporting the conventional treatment of inflammatory bowel diseases.


Assuntos
Antocianinas/farmacologia , Daucus carota/química , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Animais , Antocianinas/química , Transporte Biológico , Células CACO-2 , Linhagem Celular , Técnicas de Cocultura , Humanos , Inflamação/tratamento farmacológico , Camundongos , Permeabilidade , Extratos Vegetais/química , Células RAW 264.7
15.
Food Chem ; 190: 1069-1077, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26213078

RESUMO

Purple carrot (PC) is a potential dietary constituent, which represents a valuable source of antioxidants and can modulate the reactive oxygen species (ROS) level in the gastrointestinal tract. Antioxidant capacity of a PC extract subjected to digestion process simulated in the artificial alimentary tract, including the stomach, small intestine and colon, was analyzed in normal human cells of colon mucosa. Results indicated that the extract obtained upon passage through the gastrointestinal tract, which could come into contact with the colonic cells in situ, was less potent than the extract, which was not subjected to digestion process. Digested PC extract exhibited intracellular ROS-inhibitory capacity, with 1mg/mL showing the ROS clearance of 18.4%. A 20.7% reduction in oxidative DNA damage due to colon mucosa cells' treatment with digested PC extract was observed. These findings indicate that PC extract is capable of colonic cells' protection against the adverse effects of oxidative stress.


Assuntos
Antioxidantes/farmacologia , Daucus carota/química , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Extratos Vegetais/farmacologia , Dano ao DNA , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
16.
J Agric Food Chem ; 64(41): 7710-7721, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30860381

RESUMO

Blackcurrant fruits are a rich source of polyphenolic compounds with high antioxidant capacity and potent anti-inflammatory properties. In this study, blackcurrant extract digested in an artificial gastrointestinal tract and its intestinal permeable fraction were investigated for their ability to suppress inflammatory responses induced in a two-component cell culture system of intestinal epithelial cells and macrophages. The obtained results showed the capacity of the extract at a concentration of 1 mg of freeze-dried blackcurrant powder per mL to down-regulate the expression of inflammatory mediators, such as IL-8 (54 ± 7%) and COX-2 (17 ± 6%) in intestinal cells and IL-1α (76 ± 4%), IL-1ß (91 ± 2%), and IL-6 (61 ± 5%) in macrophages stimulated with lipopolysaccharides. Inhibited COX-2 (44 ± 6%) and iNOS (15 ± 7%) expression played a role in reducing the production of prostaglandin E2 (40 ± 20%) and NO (31 ± 9%), respectively. Decreased TNF-α secretion (24 ± 5%) by activated macrophages was also observed after treatment with blackcurrant extract. Moreover, the gastrointestinal-digested extract (0.01-1 mg/mL) dose dependently decreased the enhanced ROS generation (14-54%) and oxidative DNA damage (16-37%) induced in intestinal cells. The increased intestinal permeability caused by proinflammatory mediators, as assessed by transepithelial electrical resistance, was completely counteracted.

17.
J Sci Food Agric ; 95(9): 1892-902, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25186016

RESUMO

BACKGROUND: Broccoli is a common vegetable recognized as a rich source of antioxidants. To date, research on the antioxidant properties of broccoli, predominantly conducted on extracts, has not considered the lesions of composition and this activity after gastrointestinal digestion. Here the stability of antioxidants during gastrointestinal digestion was evaluated in conjunction with the protective effects of broccoli sprouts (BS) against oxidative stress in human colon cells. RESULTS: The obtained data suggest that, among the biocompounds identified in BS, glucosinolates were mainly degraded under gastrointestinal digestion, while phenolics, particularly hydroxycinnamic acid derivatives, were the most resistant constituents. The antioxidant capacity of BS extract subjected to gastrointestinal digestion was similar to or higher than that determined for non-digested BS. Gastrointestinal digested BS extract exhibited reactive oxygen species (ROS)-inhibitory capacity in NCM460 human colon cells, with 1 mg mL(-1) showing an ROS clearance of 76.59%. A 57.33% reduction in oxidative DNA damage in NCM460 cells due to treatment with digested BS extract was observed. CONCLUSION: The results lend support to the possible application of BS as a rich source of antioxidants to improve the defensive system against oxidative stress in the human colon mucosa.


Assuntos
Antioxidantes/análise , Brassica/química , Colo/metabolismo , Digestão , Mucosa Intestinal/metabolismo , Modelos Biológicos , Plântula/química , Antioxidantes/efeitos adversos , Antioxidantes/isolamento & purificação , Antioxidantes/metabolismo , Brassica/economia , Brassica/crescimento & desenvolvimento , Linhagem Celular , Sobrevivência Celular , Fenômenos Químicos , Ácidos Cumáricos/efeitos adversos , Ácidos Cumáricos/análise , Ácidos Cumáricos/metabolismo , Dano ao DNA , Suplementos Nutricionais/efeitos adversos , Suplementos Nutricionais/análise , Liofilização , Fármacos Gastrointestinais/efeitos adversos , Fármacos Gastrointestinais/análise , Fármacos Gastrointestinais/isolamento & purificação , Fármacos Gastrointestinais/metabolismo , Glucosinolatos/efeitos adversos , Glucosinolatos/análise , Glucosinolatos/metabolismo , Humanos , Estresse Oxidativo , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Plântula/crescimento & desenvolvimento
18.
Artigo em Inglês | MEDLINE | ID: mdl-24940684

RESUMO

Extracellular nucleotides control mechanisms such as thrombosis or inflammation that are important in several pathologies, including heart valve disease and calcification. Ectonucleoside triphosphate diphosphohydrolase 1 (eNTPD1, CD39) and ecto-5'-nucleotidase (e5NT, CD73) are ectoenzymes that convert adenosine triphosphate to adenosine diphosphate, adenosine monophosphate and finally to adenosine. Changes in activities of these enzymes influence extracellular nucleotide concentrations and therefore could be involved in valve pathology. This study aimed to analyze type of cells, specific area, level of expression and biochemical function of CD39 and CD73 in pig aortic valves. Samples were collected from aortic valves of domestic pigs. Histological sections were cut from paraffin embedded tissue blocks. Following incubation with primary antibody against CD39 or CD73, washing and secondary goat anti-rabbit secondary antibodies, slides were viewed with NanoZoomer scanner. Substantial expression CD39 and CD73 was observed in two main types of valve cells: endothelial and valve interstitial cells. Subsequently, biochemical function of CD39 and CD73 was evaluated in cells cultured from pig aortic valve. Breakdown of extracellular nucleotides added to cell medium was analyzed with high performance liquid chromatography. In the interstitial cells, the CD73 products formation was much faster than in endothelium, while for the CD39 activity this relation was opposite. Expression and high concentration of CD39 and CD73 products in endothelium are expected, but presence of CD73 in valve interstitial cells is a surprise. We conclude that CD39 and CD73 and their enzymatic activities that convert extracellular nucleotides are highly expressed and could have special function in the valve.


Assuntos
5'-Nucleotidase/metabolismo , Antígenos CD/metabolismo , Valva Aórtica/enzimologia , Apirase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Valva Aórtica/citologia , Espaço Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica , Imuno-Histoquímica , Suínos
19.
Pharmacol Rep ; 63(1): 195-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21441629

RESUMO

Cell-penetrating peptides (CPP) are a family of peptides able to penetrate the cell membrane. This group of compounds has attracted consideration as potential therapeutic tools for the delivery of various substances into cells. Here, we investigated possible interactions between several CPP synthesized in our laboratory and the vascular action of phenylephrine. We used isolated rat tail artery and examined the influence of pretreatment by seven different CPP on the concentration-response curve induced by the α1 receptor agonist phenylephrine. Peptides were synthesized by solid-phase peptide synthesis (SPPS) using the 9-fluorenylmethoxycarbonyl (Fmoc) method. Among the seven different polypeptides, i.e., TP10 (transportan-10), [Lys(AAc)13]TP, [Lys(CAc)13]TP, [Lys(GAc)13]TP, [Lys(TAc)13]TP, [Lys(UAc)13]TP and [Lys(Ac)13]TP, only TP10 and [Lys(AAc)13]TP, both at a concentration of 1 µM (the lowest concentration inducing a significant change in the contraction of isolated rat stomach in our pilot study), rendered rat tail artery more sensitive to phenylephrine; the relative potency increased significantly. Conversely, [Lys(Ac)13]TP strongly decreased the efficacy of phenylephrine.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Artérias/efeitos dos fármacos , Peptídeos Penetradores de Células/farmacologia , Fenilefrina/farmacologia , Agonistas de Receptores Adrenérgicos alfa 1/administração & dosagem , Animais , Artérias/metabolismo , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/síntese química , Relação Dose-Resposta a Droga , Interações Medicamentosas , Fluorenos/química , Fenilefrina/administração & dosagem , Projetos Piloto , Ratos , Ratos Wistar , Cauda/irrigação sanguínea , Vasoconstritores/administração & dosagem , Vasoconstritores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA