Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Obes (Lond) ; 48(6): 778-787, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38273034

RESUMO

BACKGROUND: Metabolic syndrome (MetS) is associated with premature aging, but whether this association is driven by genetic or lifestyle factors remains unclear. METHODS: Two independent discovery cohorts, consisting of twins and unrelated individuals, were examined (N = 268, aged 23-69 years). The findings were replicated in two cohorts from the same base population. One consisted of unrelated individuals (N = 1 564), and the other of twins (N = 293). Participants' epigenetic age, estimated using blood DNA methylation data, was determined using the epigenetic clocks GrimAge and DunedinPACE. The individual-level linear regression models for investigating the associations of MetS and its components with epigenetic aging were followed by within-twin-pair analyses using fixed-effects regression models to account for genetic factors. RESULTS: In individual-level analyses, GrimAge age acceleration was higher among participants with MetS (N = 56) compared to participants without MetS (N = 212) (mean 2.078 [95% CI = 0.996,3.160] years vs. -0.549 [-1.053,-0.045] years, between-group p = 3.5E-5). Likewise, the DunedinPACE estimate was higher among the participants with MetS compared to the participants without MetS (1.032 [1.002,1.063] years/calendar year vs. 0.911 [0.896,0.927] years/calendar year, p = 4.8E-11). An adverse profile in terms of specific MetS components was associated with accelerated aging. However, adjustments for lifestyle attenuated these associations; nevertheless, for DunedinPACE, they remained statistically significant. The within-twin-pair analyses suggested that genetics explains these associations fully for GrimAge and partly for DunedinPACE. The replication analyses provided additional evidence that the association between MetS components and accelerated aging is independent of the lifestyle factors considered in this study, however, suggesting that genetics is a significant confounder in this association. CONCLUSIONS: The results of this study suggests that MetS is associated with accelerated epigenetic aging, independent of physical activity, smoking or alcohol consumption, and that the association may be explained by genetics.


Assuntos
Envelhecimento , Epigênese Genética , Síndrome Metabólica , Humanos , Síndrome Metabólica/genética , Síndrome Metabólica/epidemiologia , Pessoa de Meia-Idade , Feminino , Masculino , Adulto , Idoso , Envelhecimento/genética , Envelhecimento/fisiologia , Metilação de DNA/genética , Adulto Jovem , Estilo de Vida , Senilidade Prematura/genética
2.
Mol Psychiatry ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935791

RESUMO

Cannabis is widely used worldwide, yet its links to health outcomes are not fully understood. DNA methylation can serve as a mediator to link environmental exposures to health outcomes. We conducted an epigenome-wide association study (EWAS) of peripheral blood-based DNA methylation and lifetime cannabis use (ever vs. never) in a meta-analysis including 9436 participants (7795 European and 1641 African ancestry) from seven cohorts. Accounting for effects of cigarette smoking, our trans-ancestry EWAS meta-analysis revealed four CpG sites significantly associated with lifetime cannabis use at a false discovery rate of 0.05 [Formula: see text]: cg22572071 near gene ADGRF1, cg15280358 in ADAM12, cg00813162 in ACTN1, and cg01101459 near LINC01132. Additionally, our EWAS analysis in participants who never smoked cigarettes identified another epigenome-wide significant CpG site, cg14237301 annotated to APOBR. We used a leave-one-out approach to evaluate methylation scores constructed as a weighted sum of the significant CpGs. The best model can explain 3.79% of the variance in lifetime cannabis use. These findings unravel the DNA methylation changes associated with lifetime cannabis use that are independent of cigarette smoking and may serve as a starting point for further research on the mechanisms through which cannabis exposure impacts health outcomes.

3.
Clin Epigenetics ; 15(1): 181, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950287

RESUMO

BACKGROUND: Puberty is a highly heritable and variable trait, with environmental factors having a role in its eventual timing and development. Early and late pubertal onset are both associated with various diseases developing later in life, and epigenetic characterisation of pubertal timing and development could lead to important insights. Blood DNA methylation, reacting to both genotype and environment, has been associated with puberty; however, such studies are relatively scarce. We investigated peripheral blood DNA methylation profiles (using Illumina 450 K and EPIC platforms) of 1539 young adult Finnish twins associated with pubertal development scale (PDS) at ages 12 and 14 as well as pubertal age (PA). RESULTS: Fixed effect meta-analysis of the two platforms on 347,521 CpGs in common identified 58 CpG sites associated (p < 1 × 10-5) with either PDS or PA. All four CpGs associated with PA and 45 CpGs associated with PDS were sex-specific. Thirteen CpGs had a high heritability (h2: 0.51-0.98), while one CpG site (mapped to GET4) had a high shared environmental component accounting for 68% of the overall variance in methylation at the site. Utilising twin discordance analysis, we found 6 CpG sites (5 associated with PDS and 1 with PA) that had an environmentally driven association with puberty. Furthermore, genes with PDS- or PA-associated CpGs were consistently linked to various developmental processes and diseases such as breast, prostate and ovarian cancer, while methylation quantitative trait loci of associated CpG sites were enriched in immune pathways developing during puberty. CONCLUSIONS: By identifying puberty-associated DNA methylation sites and examining the effects of sex, environment and genetics, we shed light on the intricate interplay between environment and genetics in the context of puberty. Through our comprehensive analysis, we not only deepen the understanding of the significance of both genetic and environmental factors in the complex processes of puberty and its timing, but also gain insights into potential links with disease risks.


Assuntos
Metilação de DNA , Epigênese Genética , Masculino , Feminino , Humanos , Adulto , Ilhas de CpG , Puberdade/genética , Epigenômica
4.
Eur J Epidemiol ; 38(5): 533-543, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36964875

RESUMO

Breast cancer is highly prevalent yet a more complete understanding of the interplay between genes and probable environmental risk factors, such as night work, remains lagging. Using a discordant twin pair design, we examined the association between night shift work and breast cancer risk, controlling for familial confounding. Shift work pattern was prospectively assessed by mailed questionnaires among 5,781 female twins from the Older Finnish Twin Cohort. Over the study period (1990-2018), 407 incident breast cancer cases were recorded using the Finnish Cancer Registry. Cox proportional hazards models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) adjusting for potential confounders. Within-pair co-twin analyses were employed in 57 pairs to account for potential familial confounding. Compared to women who worked days only, women with shift work that included night shifts had a 1.58-fold higher risk of breast cancer (HR = 1.58; 95%CI, 1.16-2.15, highest among the youngest women i.e. born 1950-1957, HR = 2.08; 95%CI, 1.32-3.28), whereas 2-shift workers not including night shifts, did not (HR = 0.84; 95%CI, 0.59-1.21). Women with longer sleep (average sleep duration > 8 h/night) appeared at greatest risk of breast cancer if they worked night shifts (HR = 2.91; 95%CI, 1.55-5.46; Pintx=0.32). Results did not vary by chronotype (Pintx=0.74). Co-twin analyses, though with limited power, suggested that night work may be associated with breast cancer risk independent of early environmental and genetic factors. These results confirm a previously described association between night shift work and breast cancer risk. Genetic influences only partially explain these associations.


Assuntos
Neoplasias da Mama , Jornada de Trabalho em Turnos , Feminino , Humanos , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etiologia , Finlândia/epidemiologia , Fatores de Risco , Jornada de Trabalho em Turnos/efeitos adversos , Tolerância ao Trabalho Programado
5.
J Gerontol A Biol Sci Med Sci ; 78(8): 1489-1496, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-36682031

RESUMO

BACKGROUND: Measures of biological aging range from DNA methylation (DNAm)-based estimates to measures of physical abilities. The purpose of this study was to compare DNAm- and physical functioning-based measures of biological aging in predicting mortality. METHODS: We studied 63- to 76-year-old women (N = 395) from the Finnish Twin Study on Aging (FITSA). Participants' biological age (epigenetic clocks DNAm GrimAge and DunedinPACE) was estimated using blood DNAm data. Tests of physical functioning conducted under standardized laboratory conditions included the Timed Up and Go (TUG) test and 10-m walk test. Mortality hazard ratios were calculated per every 1 standard deviation (SD) increase in the predictor. Cox regression models were conducted for individuals and twin pairs, the latter controlling for underlying genetic effects. The models were adjusted for known lifestyle predictors of mortality. RESULTS: During the follow-up period (mean 17.0 years, range 0.2-20.3), 187 participants died. In both the individual-based and pairwise analyses, GrimAge and both functional biomarkers of aging were associated with mortality independent of family relatedness, chronological age, physical activity, body mass index, smoking, education, or chronic diseases. In a model including both the DNAm-based measures and functional biomarkers of aging, GrimAge and TUG remained predictive. CONCLUSIONS: The findings suggest that DNAm GrimAge and the TUG test are strong predictors of mortality independent of each others and genetic influences. DNAm-based measures and functional tests capture different aspects of the aging process and thus complement each other as measures of biological aging in predicting mortality.


Assuntos
Envelhecimento , Metilação de DNA , Humanos , Feminino , Idoso , Seguimentos , Envelhecimento/genética , Exercício Físico , Biomarcadores , Epigênese Genética
6.
Elife ; 112022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36345722

RESUMO

Background: Adolescence is a stage of fast growth and development. Exposures during puberty can have long-term effects on health in later life. This study aims to investigate the role of adolescent lifestyle in biological aging. Methods: The study participants originated from the longitudinal FinnTwin12 study (n = 5114). Adolescent lifestyle-related factors, including body mass index (BMI), leisure-time physical activity, smoking, and alcohol use, were based on self-reports and measured at ages 12, 14, and 17 years. For a subsample, blood-based DNA methylation (DNAm) was used to assess biological aging with six epigenetic aging measures in young adulthood (21-25 years, n = 824). A latent class analysis was conducted to identify patterns of lifestyle behaviors in adolescence, and differences between the subgroups in later biological aging were studied. Genetic and environmental influences on biological aging shared with lifestyle behavior patterns were estimated using quantitative genetic modeling. Results: We identified five subgroups of participants with different adolescent lifestyle behavior patterns. When DNAm GrimAge, DunedinPoAm, and DunedinPACE estimators were used, the class with the unhealthiest lifestyle and the class of participants with high BMI were biologically older than the classes with healthier lifestyle habits. The differences in lifestyle-related factors were maintained into young adulthood. Most of the variation in biological aging shared with adolescent lifestyle was explained by common genetic factors. Conclusions: These findings suggest that an unhealthy lifestyle during pubertal years is associated with accelerated biological aging in young adulthood. Genetic pleiotropy may largely explain the observed associations. Funding: This work was supported by the Academy of Finland (213506, 265240, 263278, 312073 to J.K., 297908 to M.O. and 341750, 346509 to E.S.), EC FP5 GenomEUtwin (J.K.), National Institutes of Health/National Heart, Lung, and Blood Institute (grant HL104125), EC MC ITN Project EPITRAIN (J.K. and M.O.), the University of Helsinki Research Funds (M.O.), Sigrid Juselius Foundation (J.K. and M.O.), Yrjö Jahnsson Foundation (6868), Juho Vainio Foundation (E.S.) and Päivikki and Sakari Sohlberg foundation (E.S.).


For most animals, events that occur early in life can have a lasting impact on individuals' health. In humans, adolescence is a particularly vulnerable time when rapid growth and development collide with growing independence and experimentation. An unhealthy lifestyle during this period of rapid cell growth can contribute to later health problems like heart disease, lung disease, and premature death. This is due partly to accelerated biological aging, where the body deteriorates faster than what would be expected for an individual's chronological age. One way to track the effects of lifestyle on biological aging is by measuring epigenetic changes. Epigenetic changes consist on adding or removing chemical 'tags' on genes. These tags can switch the genes on or off without changing their sequences. Scientists can measure certain epigenetic changes by measuring the levels of methylated DNA ­ DNA with a chemical 'tag' known as a methyl group ­ in blood samples. Several algorithms ­ known as 'epigenetic clocks' ­ are available that estimate how fast an individual is aging biologically based on DNA methylation. Kankaanpää et al. show that unhealthy lifestyles during adolescence may lead to accelerated aging in early adulthood. For their analysis, Kankaanpää et al. used data on the levels of DNA methylation in blood samples from 824 twins between 21 and 25 years old. The twins were participants in the FinnTwin12 study and had completed a survey about their lifestyles at ages 12, 14, and 17. Kankaanpää et al. classified individuals into five groups depending on their lifestyles. The first three groups, which included most of the twins, contained individuals that led relatively healthy lives. The fourth group contained individuals with a higher body mass index based on their height and weight. Finally, the last group included individuals with unhealthy lifestyles who binge drank, smoked and did not exercise. After estimating the biological ages for all of the participants, Kankaanpää et al. found that both the individuals with higher body mass indices and those in the group with unhealthy lifestyles aged faster than those who reported healthier lifestyles. However, the results varied depending on which epigenetic clock Kankaanpää et al. used to measure biological aging: clocks that had been developed earlier showed fewer differences in aging between groups; while newer clocks consistently found that individuals in the higher body mass index and unhealthy groups were older. Kankaanpää et al. also showed that shared genetic factors explained both unhealthy lifestyles and accelerated biological aging. The experiments performed by Kankaanpää et al. provide new insights into the vital role of an individual's genetics in unhealthy lifestyles and cellular aging. These insights might help scientists identify at risk individuals early in life and try to prevent accelerated aging.


Assuntos
Envelhecimento , Estilo de Vida , Humanos , Adolescente , Adulto Jovem , Adulto , Envelhecimento/genética , Estudos Longitudinais , Metilação de DNA , Hábitos , Epigênese Genética
7.
Twin Res Hum Genet ; 25(4-5): 171-179, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36073160

RESUMO

DNA methylation-based age acceleration (DNAmAA) is associated with cancer, with both cancer tissue and blood showing increased DNAmAA. We aimed to investigate whether DNAmAA is associated with cancer risk within twin pairs discordant for cancer, and whether DNAmAA has the potential to serve as a biomarker for such. The study included 47 monozygotic and 48 same-sex-dizygotic cancer-discordant twin pairs from the Finnish Twin Cohort study with blood samples available between 17 and 31 years after the cancer diagnosis. We studied all cancers (95 pairs), then separately breast cancer (24 pairs) and all sites other than breast cancer (71 pairs). DNAmAA was calculated for seven models: Horvath, Horvath intrinsic epigenetic age acceleration, Hannum, Hannum intrinsic epigenetic age acceleration, Hannum extrinsic epigenetic age acceleration, PhenoAge and GrimAge. Within-pair differences in DNAmAA were analyzed by paired t tests and linear regression. Twin pairs sampled before cancer diagnosis did not differ significantly in DNAmAA. However, the within-pair differences in DNAmAA before cancer diagnosis increased significantly the closer the cancer diagnosis was, and this acceleration extended for years after the diagnosis. Pairs sampled after the diagnosis differed for DNAmAA with the Horvath models capturing cancer diagnosis-associated DNAmAA across all three cancer groupings. The results suggest that DNAmAA in blood is associated with cancer diagnosis. This may be due to epigenetic alterations in relation to cancer, its treatment or associated lifestyle changes. Based on the current study, the biomarker potential of DNAmAA in blood appears to be limited.


Assuntos
Neoplasias da Mama , Metilação de DNA , Feminino , Humanos , Envelhecimento/genética , Biomarcadores , Neoplasias da Mama/genética , Estudos de Coortes , Metilação de DNA/genética , Epigênese Genética , Gêmeos Monozigóticos
8.
J Intern Med ; 292(3): 390-408, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35404524

RESUMO

DNA methylation is an epigenetic modification that has consistently been shown to be linked with a variety of human traits and diseases. Because DNA methylation is dynamic and potentially reversible in nature and can reflect environmental exposures and predict the onset of diseases, it has piqued interest as a potential disease biomarker. DNA methylation patterns are more stable than transcriptomic or proteomic patterns, and they are relatively easy to measure to track exposure to different environments and risk factors. Importantly, technologies for DNA methylation quantification have become increasingly cost effective-accelerating new research in the field-and have enabled the development of novel DNA methylation biomarkers. Quite a few DNA methylation-based predictors for a number of traits and diseases already exist. Such predictors show potential for being more accurate than self-reported or measured phenotypes (such as smoking behavior and body mass index) and may even hold potential for applications in clinics. In this review, we will first discuss the advantages and challenges of DNA methylation biomarkers in general. We will then review the current state and future potential of DNA methylation biomarkers in two human traits that show rather consistent alterations in methylome-obesity and smoking. Lastly, we will briefly speculate about the future prospects of DNA methylation biomarkers, and possible ways to achieve them.


Assuntos
Metilação de DNA , Proteômica , Epigênese Genética , Marcadores Genéticos , Humanos , Obesidade/genética , Fumar/efeitos adversos
9.
J Gerontol A Biol Sci Med Sci ; 77(9): 1898-1906, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34752604

RESUMO

BACKGROUND: The sex gap in life expectancy has been narrowing in Finland over the past 4-5 decades; however, on average, women still live longer than men. Epigenetic clocks are markers for biological aging which predict life span. In this study, we examined the mediating role of lifestyle factors on the association between sex and biological aging in younger and older adults. METHODS: Our sample consists of younger and older twins (21‒42 years, n = 1 477; 50‒76 years, n = 763) including 151 complete younger opposite-sex twin pairs (21‒30 years). Blood-based DNA methylation was used to compute epigenetic age acceleration by 4 epigenetic clocks as a measure of biological aging. Path modeling was used to study whether the association between sex and biological aging is mediated through lifestyle-related factors, that is, education, body mass index, smoking, alcohol use, and physical activity. RESULTS: In comparison to women, men were biologically older and, in general, they had unhealthier life habits. The effect of sex on biological aging was partly mediated by body mass index and, in older twins, by smoking. Sex was directly associated with biological aging and the association was stronger in older twins. CONCLUSIONS: Previously reported sex differences in life span are also evident in biological aging. Declining smoking prevalence among men is a plausible explanation for the narrowing of the difference in life expectancy between the sexes. Data generated by the epigenetic clocks may help in estimating the effects of lifestyle and environmental factors on aging and in predicting aging in future generations.


Assuntos
Epigênese Genética , Longevidade , Adulto , Idoso , Envelhecimento/genética , Estudos Transversais , Metilação de DNA , Feminino , Humanos , Longevidade/genética , Masculino , Pessoa de Meia-Idade , Caracteres Sexuais , Adulto Jovem
10.
Nat Metab ; 3(12): 1633-1647, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34873337

RESUMO

White to brown/beige adipocytes conversion is a possible therapeutic strategy to tackle the current obesity epidemics. While mitochondria are key for energy dissipation in brown fat, it is unknown if they can drive adipocyte browning. Here, we show that the mitochondrial cristae biogenesis protein optic atrophy 1 (Opa1) facilitates cell-autonomous adipocyte browning. In two cohorts of patients with obesity, including weight discordant monozygotic twin pairs, adipose tissue OPA1 levels are reduced. In the mouse, Opa1 overexpression favours white adipose tissue expandability as well as browning, ultimately improving glucose tolerance and insulin sensitivity. Transcriptomics and metabolomics analyses identify the Jumanji family chromatin remodelling protein Kdm3a and urea cycle metabolites, including fumarate, as effectors of Opa1-dependent browning. Mechanistically, the higher cyclic adenosine monophosphate (cAMP) levels in Opa1 pre-adipocytes activate cAMP-responsive element binding protein (CREB), which transcribes urea cycle enzymes. Flux analyses in pre-adipocytes indicate that Opa1-dependent fumarate accumulation depends on the urea cycle. Conversely, adipocyte-specific Opa1 deletion curtails urea cycle and beige differentiation of pre-adipocytes, and is rescued by fumarate supplementation. Thus, the urea cycle links the mitochondrial dynamics protein Opa1 to white adipocyte browning.


Assuntos
Adipócitos Marrons/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Redes e Vias Metabólicas , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ureia/metabolismo , Adipócitos Bege/metabolismo , Adipócitos Brancos/metabolismo , Tecido Adiposo/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dieta Hiperlipídica , Regulação da Expressão Gênica , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Obesidade/genética , Obesidade/metabolismo , Termogênese , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
11.
Cancers (Basel) ; 13(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34771561

RESUMO

Smoking is associated with a moderate increased risk of Hodgkin and follicular lymphoma. To understand why, we examined lymphoma-related biomarker levels among 134 smoking and non-smoking twins (67 pairs) ascertained from the Finnish Twin Cohort. Previously collected frozen serum samples were tested for cotinine to validate self-reported smoking history. In total, 27 immune biomarkers were assayed using the Luminex Multiplex platform (R & D Systems). Current and non-current smokers were defined by a serum cotinine concentration of >3.08 ng/mL and ≤3.08 ng/mL, respectively. Associations between biomarkers and smoking were assessed using linear mixed models to estimate beta coefficients and standard errors, adjusting for age, sex and twin pair as a random effect. There were 55 never smokers, 43 current smokers and 36 former smokers. CCL17/TARC, sgp130, haptoglobin, B-cell activating factor (BAFF) and monocyte chemoattractant protein-1 (MCP1) were significantly (p < 0.05) associated with current smoking and correlated with increasing cotinine concentrations (Ptrend < 0.05). The strongest association was observed for CCL17/TARC (Ptrend = 0.0001). Immune biomarker levels were similar in former and never smokers. Current smoking is associated with increased levels of lymphoma-associated biomarkers, suggesting a possible mechanism for the link between smoking and risk of these two B-cell lymphomas.

12.
Clin Epigenetics ; 13(1): 128, 2021 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-34120642

RESUMO

BACKGROUND: Epigenetic clocks are based on DNA methylation (DNAm). It has been suggested that these clocks are useable markers of biological aging and premature mortality. Because genetic factors explain variations in both epigenetic aging and mortality, this association could also be explained by shared genetic factors. We investigated the influence of genetic and lifestyle factors (smoking, alcohol consumption, physical activity, chronic diseases, body mass index) and education on the association of accelerated epigenetic aging with mortality using a longitudinal twin design. Utilizing a publicly available online tool, we calculated the epigenetic age using two epigenetic clocks, Horvath DNAmAge and DNAm GrimAge, in 413 Finnish twin sisters, aged 63-76 years, at the beginning of the 18-year mortality follow-up. Epigenetic age acceleration was calculated as the residuals from a linear regression model of epigenetic age estimated on chronological age (AAHorvath, AAGrimAge, respectively). Cox proportional hazard models were conducted for individuals and twin pairs. RESULTS: The results of the individual-based analyses showed an increased mortality hazard ratio (HR) of 1.31 (CI95: 1.13-1.53) per one standard deviation (SD) increase in AAGrimAge. The results indicated no significant associations of AAHorvath with mortality. Pairwise mortality analyses showed an HR of 1.50 (CI95: 1.02-2.20) per 1 SD increase in AAGrimAge. However, after adjusting for smoking, the HR attenuated substantially and was statistically non-significant (1.29; CI95: 0.84-1.99). Similarly, in multivariable adjusted models the HR (1.42-1.49) was non-significant. In AAHorvath, the non-significant HRs were lower among monozygotic pairs in comparison to dizygotic pairs, while in AAGrimAge there were no systematic differences by zygosity. Further, the pairwise analysis in quartiles showed that the increased within pair difference in AAGrimAge was associated with a higher all-cause mortality risk. CONCLUSIONS: In conclusion, the findings suggest that DNAm GrimAge is a strong predictor of mortality independent of genetic influences. Smoking, which is known to alter DNAm levels and is built into the DNAm GrimAge algorithm, attenuated the association between epigenetic aging and mortality risk.


Assuntos
Envelhecimento/fisiologia , Metilação de DNA/genética , Epigenômica/métodos , Avaliação Geriátrica/métodos , Estilo de Vida , Idoso , Envelhecimento/genética , Consumo de Bebidas Alcoólicas , Epigênese Genética/genética , Exercício Físico , Feminino , Finlândia , Seguimentos , Avaliação Geriátrica/estatística & dados numéricos , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Fumar , Gêmeos Monozigóticos
13.
Clin Epigenetics ; 13(1): 110, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001218

RESUMO

The aim of this study was to investigate the correspondence of different biological ageing estimates (i.e. epigenetic age) in blood and muscle tissue and their associations with physical activity (PA), physical function and body composition. Two independent cohorts (N = 139 and N = 47) were included, whose age span covered adulthood (23-69 years). Whole blood and m. vastus lateralis samples were collected, and DNA methylation was analysed. Four different DNA methylation age (DNAmAge) estimates were calculated using genome-wide methylation data and publicly available online tools. A novel muscle-specific methylation age was estimated using the R-package 'MEAT'. PA was measured with questionnaires and accelerometers. Several tests were conducted to estimate cardiorespiratory fitness and muscle strength. Body composition was estimated by dual-energy X-ray absorptiometry. DNAmAge estimates from blood and muscle were highly correlated with chronological age, but different age acceleration estimates were weakly associated with each other. The monozygotic twin within-pair similarity of ageing pace was higher in blood (r = 0.617-0.824) than in muscle (r = 0.523-0.585). Associations of age acceleration estimates with PA, physical function and body composition were weak in both tissues and mostly explained by smoking and sex. The muscle-specific epigenetic clock MEAT was developed to predict chronological age, which may explain why it did not associate with functional phenotypes. The Horvath's clock and GrimAge were weakly associated with PA and related phenotypes, suggesting that higher PA would be linked to accelerated biological ageing in muscle. This may, however, be more reflective of the low capacity of epigenetic clock algorithms to measure functional muscle ageing than of actual age acceleration. Based on our results, the investigated epigenetic clocks have rather low value in estimating muscle ageing with respect to the physiological adaptations that typically occur due to ageing or PA. Thus, further development of methods is needed to gain insight into muscle tissue-specific ageing and the underlying biological pathways.


Assuntos
Envelhecimento/sangue , Envelhecimento/genética , Metilação de DNA/genética , Epigenômica/métodos , Exercício Físico/estatística & dados numéricos , Músculo Esquelético/fisiologia , Adulto , Idoso , Estudos de Coortes , Epigênese Genética/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
Med Sci Sports Exerc ; 53(3): 487-495, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32868581

RESUMO

PURPOSE: Greater leisure-time physical activity (LTPA) associates with healthier lives, but knowledge regarding occupational physical activity (OPA) is more inconsistent. DNA methylation (DNAm) patterns capture age-related changes in different tissues. We aimed to assess how LTPA and OPA are associated with three DNAm-based epigenetic age estimates, namely, DNAm age, PhenoAge, and GrimAge. METHODS: The participants were young adult (21-25 yr, n = 285) and older (55-74 yr, n = 235) twin pairs, including 16 pairs with documented long-term LTPA discordance. Genome-wide DNAm from blood samples was used to compute DNAm age, PhenoAge, and GrimAge Age acceleration (Acc), which describes the difference between chronological and epigenetic ages. Physical activity was assessed with sport, leisure-time, and work indices based on the Baecke Questionnaire. Genetic and environmental variance components of epigenetic age Acc were estimated by quantitative genetic modeling. RESULTS: Epigenetic age Acc was highly heritable in young adult and older twin pairs (~60%). Sport index was associated with slower and OPA with faster DNAm GrimAge Acc after adjusting the model for sex. Genetic factors and nonshared environmental factors in common with sport index explained 1.5%-2.7% and 1.9%-3.5%, respectively, of the variation in GrimAge Acc. The corresponding proportions considering OPA were 0.4%-1.8% and 0.7%-1.8%, respectively. However, these proportions were minor (<0.5%) after adjusting the model for smoking status. CONCLUSIONS: LTPA associates with slower and OPA with faster epigenetic aging. However, adjusting the models for smoking status, which may reflect the accumulation of unhealthy lifestyle habits, attenuated the associations.


Assuntos
Envelhecimento/fisiologia , Metilação de DNA/fisiologia , Epigênese Genética/fisiologia , Exercício Físico/fisiologia , Atividades de Lazer , Saúde Ocupacional , Adulto , Fatores Etários , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Fatores Sexuais , Fumar/efeitos adversos , Fumar/genética , Fumar/fisiopatologia , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Adulto Jovem
15.
Clin Epigenetics ; 11(1): 130, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477183

RESUMO

BACKGROUND: Alzheimer's disease results from a neurodegenerative process that starts well before the diagnosis can be made. New prognostic or diagnostic markers enabling early intervention into the disease process would be highly valuable. Environmental and lifestyle factors largely modulate the disease risk and may influence the pathogenesis through epigenetic mechanisms, such as DNA methylation. As environmental and lifestyle factors may affect multiple tissues of the body, we hypothesized that the disease-associated DNA methylation signatures are detectable in the peripheral blood of discordant twin pairs. RESULTS: Comparison of 23 disease discordant Finnish twin pairs with reduced representation bisulfite sequencing revealed peripheral blood DNA methylation differences in 11 genomic regions with at least 15.0% median methylation difference and FDR adjusted p value ≤ 0.05. Several of the affected genes are primarily associated with neuronal functions and pathologies and do not display disease-associated differences in gene expression in blood. The DNA methylation mark in ADARB2 gene was found to be differentially methylated also in the anterior hippocampus, including entorhinal cortex, of non-twin cases and controls. Targeted bisulfite pyrosequencing of the DNA methylation mark in ADARB2 gene in 62 Finnish and Swedish twin pairs revealed that, in addition to the disease status, DNA methylation of this region is influenced by gender, age, zygosity, APOE genotype, and smoking. Further analysis of 120 Swedish twin pairs indicated that this specific DNA methylation mark is not predictive for Alzheimer's disease and becomes differentially methylated after disease onset. CONCLUSIONS: DNA methylation differences can be detected in the peripheral blood of twin pairs discordant for Alzheimer's disease. These DNA methylation signatures may have value as disease markers and provide insights into the molecular mechanisms of pathogenesis. We found no evidence that the DNA methylation marks would be associated with gene expression in blood. Further studies are needed to elucidate the potential importance of the associated genes in neuronal functions and to validate the prognostic or diagnostic value of the individual marks or marker panels.


Assuntos
Adenosina Desaminase/genética , Doença de Alzheimer/genética , Metilação de DNA , Doenças em Gêmeos/genética , Proteínas de Ligação a RNA/genética , Gêmeos Monozigóticos/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/sangue , Doenças em Gêmeos/sangue , Epigênese Genética , Feminino , Finlândia , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Suécia
16.
Twin Res Hum Genet ; 22(4): 240-254, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31462340

RESUMO

The older Finnish Twin Cohort (FTC) was established in 1974. The baseline survey was in 1975, with two follow-up health surveys in 1981 and 1990. The fourth wave of assessments was done in three parts, with a questionnaire study of twins born during 1945-1957 in 2011-2012, while older twins were interviewed and screened for dementia in two time periods, between 1999 and 2007 for twins born before 1938 and between 2013 and 2017 for twins born in 1938-1944. The content of these wave 4 assessments is described and some initial results are described. In addition, we have invited twin-pairs, based on response to the cohortwide surveys, to participate in detailed in-person studies; these are described briefly together with key results. We also review other projects based on the older FTC and provide information on the biobanking of biosamples and related phenotypes.


Assuntos
Bancos de Espécimes Biológicos , Doenças em Gêmeos/genética , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Consumo de Bebidas Alcoólicas/epidemiologia , Consumo de Bebidas Alcoólicas/genética , Estudos de Coortes , Doenças em Gêmeos/epidemiologia , Feminino , Finlândia/epidemiologia , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Fumar/epidemiologia , Fumar/genética , Inquéritos e Questionários
17.
Epigenomics ; 11(13): 1469-1486, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31466478

RESUMO

Aim: Smoking strongly influences DNA methylation, with current and never smokers exhibiting different methylation profiles. Methods: To advance the practical applicability of the smoking-associated methylation signals, we used machine learning methodology to train a classifier for smoking status prediction. Results: We show the prediction performance of our classifier on three independent whole-blood datasets demonstrating its robustness and global applicability. Furthermore, we examine the reasons for biologically meaningful misclassifications through comprehensive phenotypic evaluation. Conclusion: The major contribution of our classifier is its global applicability without a need for users to determine a threshold value for each dataset to predict the smoking status. We provide an R package, EpiSmokEr (Epigenetic Smoking status Estimator), facilitating the use of our classifier to predict smoking status in future studies.


Assuntos
Metilação de DNA , Epigenômica/métodos , Fumar Tabaco/genética , Adulto , Idoso , Biologia Computacional/métodos , Ilhas de CpG , Epigênese Genética , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Software
18.
Eur Respir J ; 54(1)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31073081

RESUMO

Previous reports link differential DNA methylation (DNAme) to environmental exposures that are associated with lung function. Direct evidence on lung function DNAme is, however, limited. We undertook an agnostic epigenome-wide association study (EWAS) on pre-bronchodilation lung function and its change in adults.In a discovery-replication EWAS design, DNAme in blood and spirometry were measured twice, 6-15 years apart, in the same participants of three adult population-based discovery cohorts (n=2043). Associated DNAme markers (p<5×10-7) were tested in seven replication cohorts (adult: n=3327; childhood: n=420). Technical bias-adjusted residuals of a regression of the normalised absolute ß-values on control probe-derived principle components were regressed on level and change of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and their ratio (FEV1/FVC) in the covariate-adjusted discovery EWAS. Inverse-variance-weighted meta-analyses were performed on results from discovery and replication samples in all participants and never-smokers.EWAS signals were enriched for smoking-related DNAme. We replicated 57 lung function DNAme markers in adult, but not childhood samples, all previously associated with smoking. Markers not previously associated with smoking failed replication. cg05575921 (AHRR (aryl hydrocarbon receptor repressor)) showed the statistically most significant association with cross-sectional lung function (FEV1/FVC: pdiscovery=3.96×10-21 and pcombined=7.22×10-50). A score combining 10 DNAme markers previously reported to mediate the effect of smoking on lung function was associated with lung function (FEV1/FVC: p=2.65×10-20).Our results reveal that lung function-associated methylation signals in adults are predominantly smoking related, and possibly of clinical utility in identifying poor lung function and accelerated decline. Larger studies with more repeat time-points are needed to identify lung function DNAme in never-smokers and in children.


Assuntos
Metilação de DNA , Epigênese Genética , Estudo de Associação Genômica Ampla , Fumar/genética , Adulto , Idoso , Ilhas de CpG , Feminino , Volume Expiratório Forçado , Humanos , Modelos Lineares , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Valores de Referência , Fumar/fisiopatologia , Espirometria
19.
Front Pharmacol ; 10: 126, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837884

RESUMO

Epigenetic research involves examining the mitotically heritable processes that regulate gene expression, independent of changes in the DNA sequence. Recent technical advances such as whole-genome bisulfite sequencing and affordable epigenomic array-based technologies, allow researchers to measure epigenetic profiles of large cohorts at a genome-wide level, generating comprehensive high-dimensional datasets that may contain important information for disease development and treatment opportunities. The epigenomic profile for a certain disease is often a result of the complex interplay between multiple genetic and environmental factors, which poses an enormous challenge to visualize and interpret these data. Furthermore, due to the dynamic nature of the epigenome, it is critical to determine causal relationships from the many correlated associations. In this review we provide an overview of recent data analysis approaches to integrate various omics layers to understand epigenetic mechanisms of complex diseases, such as obesity and cancer. We discuss the following topics: (i) advantages and limitations of major epigenetic profiling techniques, (ii) resources for standardization, annotation and harmonization of epigenetic data, and (iii) statistical methods and machine learning methods for establishing data-driven hypotheses of key regulatory mechanisms. Finally, we discuss the future directions for data integration that shall facilitate the discovery of epigenetic-based biomarkers and therapies.

20.
Clin Epigenetics ; 11(1): 1, 2019 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-30611298

RESUMO

BACKGROUND: DNA methylation alteration extensively associates with smoking and is a plausible link between smoking and adverse health. We examined the association between epigenome-wide DNA methylation and serum cotinine levels as a proxy of nicotine exposure and smoking quantity, assessed the role of SNPs in these associations, and evaluated molecular mediation by methylation in a sample of biochemically verified current smokers (N = 310). RESULTS: DNA methylation at 50 CpG sites was associated (FDR < 0.05) with cotinine levels, 17 of which are novel associations. As cotinine levels are influenced not only by nicotine intake but also by CYP2A6-mediated nicotine metabolism rate, we performed secondary analyses adjusting for genetic risk score of nicotine metabolism rate and identified five additional novel associations. We further assessed the potential role of genetic variants in the detected association between methylation and cotinine levels observing 124 cis and 3898 trans methylation quantitative trait loci (meQTLs). Nineteen of these SNPs were also associated with cotinine levels (FDR < 0.05). Further, at seven CpG sites, we observed a trend (P < 0.05) that altered DNA methylation mediates the effect of SNPs on nicotine exposure rather than a direct consequence of smoking. Finally, we performed replication of our findings in two independent cohorts of biochemically verified smokers (N = 450 and N = 79). CONCLUSIONS: Using cotinine, a biomarker of nicotine exposure, we replicated and extended identification of novel epigenetic associations in smoking-related genes. We also demonstrated that DNA methylation in some of the identified loci is driven by the underlying genotype and may mediate the causal effect of genotype on cotinine levels.


Assuntos
Cotinina/sangue , Metilação de DNA , Epigenômica/métodos , Polimorfismo de Nucleotídeo Único , Fumar/genética , Adulto , Idoso , Ilhas de CpG , Citocromo P-450 CYP2A6/genética , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fumar/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA