Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Neurophysiol ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37963332

RESUMO

PURPOSE: Intraoperative bulbocavernosus reflex neuromonitoring has been utilized to protect bowel, bladder, and sexual function, providing a continuous functional assessment of the somatic sacral nervous system during surgeries where it is at risk. Bulbocavernosus reflex data may also provide additional functional insight, including an evaluation for spinal shock, distinguishing upper versus lower motor neuron injury (conus vs. cauda syndromes) and prognosis for postoperative bowel and bladder function. Continuous intraoperative bulbocavernosus reflex monitoring has been utilized to provide the surgeon with an ongoing functional assessment of the anatomical elements involved in the S2-S4 mediated reflex arc including the conus, cauda equina and pudendal nerves. Intraoperative bulbocavernosus reflex monitoring typically includes the electrical activation of the dorsal nerves of the genitals to initiate the afferent component of the reflex, followed by recording the resulting muscle response using needle electromyography recordings from the external anal sphincter. METHODS: Herein we describe a complementary and novel technique that includes recording electromyography responses from the external urethral sphincter to monitor the external urethral sphincter reflex. Specialized foley catheters embedded with recording electrodes have recently become commercially available that provide the ability to perform intraoperative external urethral sphincter muscle recordings. RESULTS: We describe technical details and the potential utility of incorporating external urethral sphincter reflex recordings into existing sacral neuromonitoring paradigms to provide redundant yet complementary data streams. CONCLUSIONS: We present two illustrative neurosurgical oncology cases to demonstrate the utility of the external urethral sphincter reflex technique in the setting of the necessary surgical sacrifice of sacral nerve roots.

2.
Neurosurg Rev ; 46(1): 46, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36715828

RESUMO

Flash visual evoked potentials (fVEPs) provide a means to interrogate visual system functioning intraoperatively during tumor resection in which the optic pathway is at risk for injury. Due to technical limitations, fVEPs have remained underutilized in the armamentarium of intraoperative neurophysiological monitoring (IONM) techniques. Here we review the evolution of fVEPs as an IONM technique with emphasis on the enabling technological and intraoperative improvements. A combined approach with electroretinography (ERG) has enhanced feasibility of fVEP neuromonitoring as a practical application to increase safety and reduce error during tumor resection near the prechiasmal optic pathway. The major advance has been towards differentiating true cases of damage from false findings. We use two illustrative neurosurgical cases in which fVEPs were monitored with and without ERG to discuss limitations and demonstrate how ERG data can clarify false-positive findings in the operating room. Standardization measures have focused on uniformity of photostimulation parameters for fVEP recordings between neurosurgical groups.


Assuntos
Monitorização Neurofisiológica Intraoperatória , Neoplasias , Humanos , Vias Visuais , Potenciais Evocados Visuais , Procedimentos Neurocirúrgicos/métodos , Monitorização Neurofisiológica Intraoperatória/métodos
3.
World Neurosurg X ; 17: 100139, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36217537

RESUMO

At present, surgical resection of primary intramedullary spinal cord tumors is the mainstay of treatment. However, given the dimensional constraints of the narrow spinal canal and dense organization of the ascending and descending tracts, intramedullary spinal cord tumor resection carries a significant risk of iatrogenic neurological injury. Intraoperative neurophysiological monitoring (IONM) and mapping techniques have been developed to evaluate the functional integrity of the essential neural pathways and optimize the surgical strategies. IONM can also inform on impending harm to at-risk structures and can correlate with postoperative functional recovery if damage has occurred. Direct waves (D-waves) will provide immediate feedback on the integrity of the lateral corticospinal tract. In the present review, we have provided an update on the utility of D-waves for spinal cord tumor resection. We have highlighted the neuroanatomical and neurophysiological insights from the use of D-wave monitoring, the technical considerations and limitations of the D-wave technique, and multimodal co-monitoring with motor-evoked potentials and somatosensory-evoked potentials. Together with motor-evoked potentials, D-waves can help to guide the extent of tumor resection and provide intraoperative warning signs and alarm criteria to direct the surgical strategy. D-waves can also serve as prognostic biomarkers for long-term recovery of postoperative motor function. We propose that the use of D-wave IONM can contribute key findings for clinical decision-making during spinal cord tumor resection.

4.
World Neurosurg ; 163: 104-122.e2, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35381381

RESUMO

Enhanced Recovery After Surgery (ERAS) protocols describe a standardized method of preoperative, perioperative, and postoperative care to enhance outcomes and minimize complication risks surrounding elective surgical intervention. A growing body of evidence is being generated as we learn to apply principles of ERAS standardization to neurosurgical patients. First applied in spinal surgery, ERAS protocols have been extended to cranial neuro-oncologic procedures. This review synthesizes recent findings to generate evidence-based guidelines to manage neurosurgical oncology patients with standardized systems and assess ability of these systems to coordinate multidisciplinary, patient-centric care efforts. Furthermore, we highlight the potential usefulness of multimedia, app-based communication platforms to facilitate patient education, autonomy, and team communication within each of the 3 settings.


Assuntos
Recuperação Pós-Cirúrgica Melhorada , Procedimentos Cirúrgicos Eletivos/efeitos adversos , Humanos , Tempo de Internação , Assistência Perioperatória/métodos , Cuidados Pós-Operatórios , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle
5.
Cureus ; 13(10): e18613, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34765368

RESUMO

Solitary fibrous tumors (SFTs) are rare soft tissue neoplasms that can impact the central nervous system (CNS). SFTs comprise <1% of all primary CNS tumors. Here, we describe a rare case of intradural, extramedullary SFT arising within the thoracic spine that was treated with surgical resection. Histological features were evaluated and revealed a highly cellular tumor with positive expression of BCL2, CD34, CD99, and STAT6 proteins that are consistent with a diagnosis of SFT. We discuss the use of surgical intervention for long-term disease control of spinal SFT and evaluate the role of postoperative radiation therapy in management strategies. Lastly, we review the literature reports of intradural, extramedullary SFTs in the thoracic spine. The importance of molecular characterization by histopathology to properly determine diagnosis and prognosis is emphasized.

6.
iScience ; 24(8): 102827, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34381965

RESUMO

To repair neural circuitry following spinal cord injury (SCI), neural stem cell (NSC) transplantation has held a primary focus; however, stochastic outcomes generate challenges driven in part by NSC differentiation and tumor formation. The recent ability to generate regionally specific neurons and their support cells now allows consideration of directed therapeutic approaches with pre-differentiated and networked spinal neural cells. Here, we form encapsulated, transplantable neuronal networks of regionally matched cervical spinal motor neurons, interneurons, and oligodendrocyte progenitor cells derived through trunk-biased neuromesodermal progenitors. We direct neurite formation in alginate-based neural ribbons to generate electrically active, synaptically connected networks, characterized by electrophysiology and calcium imaging before transplantation into rodent models of contused SCI for evaluation at 10-day and 6-week timepoints. The in vivo analyses demonstrate viability and retention of interconnected synaptic networks that readily integrate with the host parenchyma to advance goals of transplantable neural circuitry for SCI treatment.

7.
Clin Neurol Neurosurg ; 208: 106831, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34332268

RESUMO

OBJECTIVES: Pet ownership has been shown to decrease morbidity and mortality in several aspects of health but has not been studied in chronic pain patients. We evaluate whether subjects who underwent spinal cord stimulation (SCS) and own a pet have improved outcomes compared to non-pet owners. METHODS: After obtaining IRB approval, we re-contacted 38 subjects who underwent SCS surgery with preoperative and 1-year postoperative data on Numerical Rating Scale (NRS), McGill Pain Questionnaire (MPQ), Oswestry Disability Index (ODI), Beck Depression Inventory (BDI), and Pain Catastrophizing scale (PCS). We examined influence of pets and pet ownership-specific behaviors on improvement in SCS outcomes. RESULTS: Patients included 24 males/14 females with a mean age of 59.9 ± 11.5 years. At mean follow-up of 12.2 months (range 10-14), there were improvements in NRS, ODI, BDI, PCS and MPQ. Twenty subjects owned pets and 18 did not; all believed pet ownership could improve health. Pet owners improved more on NRS-right now (p = 0.05) and BDI (p = 0.05), and were more satisfied with SCS (p = 0.04). No significant improvement was seen in ODI, MPQ, or PCS. However, PCS did improve in pet owners who exercised their pet (PCS-total, p < 0.01; PCS-helplessness, p < 0.01; PCS-rumination, p = 0.05; PCS-magnification, p = 0.02). CONCLUSIONS: We provide preliminary evidence that pet ownership is associated with improved pain, depression and SCS satisfaction. Exercising with a pet also appears to be beneficial in limiting pain catastrophizing. Pets show promise as a novel means to improve patient SCS outcomes.


Assuntos
Síndromes da Dor Regional Complexa/terapia , Síndrome Pós-Laminectomia/terapia , Vínculo Humano-Animal , Neuralgia/terapia , Animais de Estimação , Estimulação da Medula Espinal , Idoso , Animais , Síndromes da Dor Regional Complexa/psicologia , Avaliação da Deficiência , Síndrome Pós-Laminectomia/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuralgia/psicologia , Resultado do Tratamento
8.
Pain Med ; 22(6): 1305-1311, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33502508

RESUMO

OBJECTIVE: Generator site pain is a relatively common phenomenon in patients undergoing spinal cord stimulation (SCS) that complicates management and effective pain relief. This pain may be managed conservatively, with repositioning of the battery and, in some cases, with explant. Here we explore our experience with management of generator site pain ("pocket pain") in a large single-center study. METHODS: All SCS permanent implants and implantable pulse generator (IPG) placements over 9 years were reviewed. Of 785 cases, we identified 43 patients with pocket pain (5.5%). Demographics and treatments of the pocket pain cohort were analyzed. RESULTS: The mean age (± SEM) of the pocket pain cohort was 46.86 ± 1.06, and there were 10/33 males/females. Females were overrepresented in pocket pain cohort (76.7%) when compared with the total SCS cohort (59.0%) (X2 = 5.93, P = 0.015). Diagnosis included failed back surgery syndrome (51.2%), complex regional pain syndrome (23.3%), and chronic neuropathic pain (25.5%). No patients improved with conservative therapy. All patients either went on to revision (n = 23) or explant (n = 20). Time from initial surgery to development of pocket pain was 7.5 months (range: 0.3-88) and from pocket pain to revision surgery was 4.5 months (range: 0.4-26). In addition, significantly more pocket pain patients (65.1%) had workers' compensation (WC) insurance compared with patients without pocket pain (24.9%) (X2 = 33.3, P < 0.001). CONCLUSION: In our institutional experience, pocket pain was inadequately managed with conservative treatments. Being female and having SCS filed under WC increased risk of pocket pain. Future work will explore the nuances in device placement based on body shape and manual activity responsibilities.


Assuntos
Dor Crônica , Síndrome Pós-Laminectomia , Neuralgia , Estimulação da Medula Espinal , Dor Crônica/terapia , Feminino , Humanos , Masculino , Manejo da Dor , Medição da Dor , Estimulação da Medula Espinal/efeitos adversos , Resultado do Tratamento
9.
Front Cell Neurosci ; 15: 725195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046774

RESUMO

Neural cell interventions in spinal cord injury (SCI) have focused predominantly on transplanted multipotent neural stem/progenitor cells (NSPCs) for animal research and clinical use due to limited information on survival of spinal neurons. However, transplanted NSPC fate is unpredictable and largely governed by injury-derived matrix and cytokine factors that are often gliogenic and inflammatory. Here, using a rat cervical hemicontusion model, we evaluate the survival and integration of hiPSC-derived spinal motor neurons (SMNs) and oligodendrocyte progenitor cells (OPCs). SMNs and OPCs were differentiated in vitro through a neuromesodermal progenitor stage to mimic the natural origin of the spinal cord. We demonstrate robust survival and engraftment without additional injury site modifiers or neuroprotective biomaterials. Ex vivo differentiated neurons achieve cervical spinal cord matched transcriptomic and proteomic profiles, meeting functional electrophysiology parameters prior to transplantation. These data establish an approach for ex vivo developmentally accurate neuronal fate specification and subsequent transplantation for a more streamlined and predictable outcome in neural cell-based therapies of SCI.

10.
Sci Rep ; 10(1): 12939, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737387

RESUMO

Cell therapy for the injured spinal cord will rely on combined advances in human stem cell technologies and delivery strategies. Here we encapsulate homotypic spinal cord neural stem cells (scNSCs) in an alginate-based neural ribbon delivery platform. We perform a comprehensive in vitro analysis and qualitatively demonstrate graft survival and injury site retention using a rat C4 hemi-contusion model. Pre-configured neural ribbons are transport-stable modules that enable site-ready injection, and can support scNSC survival and retention in vivo. Neural ribbons offer multifunctionality in vitro including co-encapsulation of the injury site extracellular matrix modifier chondroitinase ABC (chABC), tested here in glial scar models, and ability of cervically-patterned scNSCs to differentiate within neural ribbons and project axons for integration with 3-D external matrices. This is the first extensive in vitro characterization of neural ribbon technology, and constitutes a plausible method for reproducible delivery, placement, and retention of viable neural cells in vivo.


Assuntos
Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Medula Espinal , Transplante de Células-Tronco , Animais , Condroitina ABC Liase/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Células-Tronco Neurais/transplante , Ratos Long-Evans , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco/instrumentação , Transplante de Células-Tronco/métodos
11.
Sci Rep ; 6: 37637, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27917881

RESUMO

The realization of personalized medicine through human induced pluripotent stem cell (iPSC) technology can be advanced by transcriptomics, epigenomics, and bioinformatics that inform on genetic pathways directing tissue development and function. When possible, population diversity should be included in new studies as resources become available. Previously we derived replicate iPSC lines of African American, Hispanic-Latino and Asian self-designated ethnically diverse (ED) origins with normal karyotype, verified teratoma formation, pluripotency biomarkers, and tri-lineage in vitro commitment. Here we perform bioinformatics of RNA-Seq and ChIP-seq pluripotency data sets for two replicate Asian and Hispanic-Latino ED-iPSC lines that reveal differences in generation of contractile cardiomyocytes but similar and robust differentiation to multiple neural, pancreatic, and smooth muscle cell types. We identify shared and distinct genes and contributing pathways in the replicate ED-iPSC lines to enhance our ability to understand how reprogramming to iPSC impacts genes and pathways contributing to cardiomyocyte contractility potential.


Assuntos
Biomarcadores , Diferenciação Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , Transcriptoma/genética , Etnicidade/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Miócitos Cardíacos/citologia , Medicina de Precisão
12.
Sci Rep ; 5: 15234, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26482195

RESUMO

The human genome with all its ethnic variations contributes to differences in human development, aging, disease, repair, and response to medical treatments and is an exciting area of research and clinical study. The availability of well-characterized ethnically diverse stem cell lines is limited and has not kept pace with other advances in stem cell research. Here we derived xenofree ethnically diverse-human induced pluripotent stem cell (ED-iPSC) lines from fibroblasts obtained from individuals of African American, Hispanic-Latino, Asian, and Caucasian ethnic origin and have characterized the lines under a uniform platform for comparative analysis. Derived ED-iPSC lines are low passage number and evaluated in vivo by teratoma formation and in vitro by high throughput microarray analysis of EB formation and early differentiation for tri-lineage commitment to endoderm, ectoderm and mesoderm. These new xenofree ED-iPSC lines represent a well-characterized valuable resource with potential for use in future research in drug discovery or clinical investigations.


Assuntos
Etnicidade/genética , Variação Genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Biomarcadores , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Endoderma/citologia , Fibroblastos/citologia , Perfilação da Expressão Gênica , Ordem dos Genes , Vetores Genéticos/genética , Humanos , Cariótipo , Camundongos , Teratoma/genética , Teratoma/metabolismo , Teratoma/patologia , Transgenes
13.
Macromol Biosci ; 15(7): 892-900, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25810210

RESUMO

In pluripotent stem cell differentiation, embryoid bodies (EBs) provide a three-dimensional [3D] multicellular precursor in lineage specification. The internal structure of EBs is not well characterized yet is predicted to be an important parameter to differentiation. Here, we use custom SU-8 molds to generate transparent lithography-templated arrays of polydimethylsiloxane (LTA-PDMS) for high throughput analysis of human embryonic stem cell (hESC) EB formation and internal architecture. EBs formed in 200 and 500 µm diameter microarray wells by use of single cells, 2D clusters, or 3D early aggregates were compared. We observe that 200 µm EBs are monocystic versus 500 µm multicystic EBs that contain macro, meso and microsized cysts. In adherent differentiation of 500 µm EBs, the multicystic character impairs the 3D to 2D transition creating non-uniform monolayers. Our findings reveal that EB core structure has a size-dependent character that influences its architecture and cell population uniformity during early differentiation.


Assuntos
Corpos Embrioides/citologia , Análise Serial de Tecidos , Diferenciação Celular , Dimetilpolisiloxanos , Corpos Embrioides/fisiologia , Humanos
14.
Nat Commun ; 5: 5339, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25348260

RESUMO

Bipolar spindle assembly is a critical control point for initiation of mitosis through nucleation and organization of spindle microtubules and is regulated by kinesin-like proteins. In fission yeast, the kinesin-14 Pkl1 binds the γ-tubulin ring complex (γ-TuRC) microtubule-organizing centre at spindle poles and can alter its structure and function. Here we show that kinesin-14 blocks microtubule nucleation in yeast and reveal that this inhibition is countered by the kinesin-5 protein, Cut7. Furthermore, we demonstrate that Cut7 binding to γ-TuRC and the Cut7 BimC domain are both required for inhibition of Pkl1. We also demonstrate that a yeast kinesin-14 peptide blocks microtubule nucleation in two human breast cancer cell lines, suggesting that this mechanism is evolutionarily conserved. In conclusion, using genetic, biochemical and cell biology approaches we uncover antagonistic control of microtubule nucleation at γ-TuRC by two kinesin-like proteins, which may represent an attractive anti-mitotic target for cancer therapies.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Schizosaccharomyces/metabolismo , Tubulina (Proteína)/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Segregação de Cromossomos/efeitos dos fármacos , Feminino , Humanos , Cinesinas/química , Células MCF-7 , Viabilidade Microbiana/efeitos dos fármacos , Centro Organizador dos Microtúbulos/efeitos dos fármacos , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/efeitos dos fármacos , Mutação/genética , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Schizosaccharomyces/efeitos dos fármacos , Proteínas de Schizosaccharomyces pombe/metabolismo , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA