Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 10: 1212174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781317

RESUMO

Cardiovascular disease (CVD) is a leading cause of morbidity and mortality, especially among the aging population. The "response-to-injury" model proposed by Dr. Russell Ross in 1999 emphasizes inflammation as a critical factor in atherosclerosis development, with atherosclerotic plaques forming due to endothelial cell (EC) injury, followed by myeloid cell adhesion and invasion into the blood vessel walls. Recent evidence indicates that cancer and its treatments can lead to long-term complications, including CVD. Cellular senescence, a hallmark of aging, is implicated in CVD pathogenesis, particularly in cancer survivors. However, the precise mechanisms linking premature senescence to CVD in cancer survivors remain poorly understood. This article aims to provide mechanistic insights into this association and propose future directions to better comprehend this complex interplay.

2.
Front Cardiovasc Med ; 10: 1186679, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332576

RESUMO

Cancer survivors undergone treatment face an increased risk of developing atherosclerotic cardiovascular disease (CVD), yet the underlying mechanisms remain elusive. Recent studies have revealed that chemotherapy can drive senescent cancer cells to acquire a proliferative phenotype known as senescence-associated stemness (SAS). These SAS cells exhibit enhanced growth and resistance to cancer treatment, thereby contributing to disease progression. Endothelial cell (EC) senescence has been implicated in atherosclerosis and cancer, including among cancer survivors. Treatment modalities for cancer can induce EC senescence, leading to the development of SAS phenotype and subsequent atherosclerosis in cancer survivors. Consequently, targeting senescent ECs displaying the SAS phenotype hold promise as a therapeutic approach for managing atherosclerotic CVD in this population. This review aims to provide a mechanistic understanding of SAS induction in ECs and its contribution to atherosclerosis among cancer survivors. We delve into the mechanisms underlying EC senescence in response to disturbed flow and ionizing radiation, which play pivotal role in atherosclerosis and cancer. Key pathways, including p90RSK/TERF2IP, TGFßR1/SMAD, and BH4 signaling are explored as potential targets for cancer treatment. By comprehending the similarities and distinctions between different types of senescence and the associated pathways, we can pave the way for targeted interventions aim at enhancing the cardiovascular health of this vulnerable population. The insights gained from this review may facilitate the development of novel therapeutic strategies for managing atherosclerotic CVD in cancer survivors.

3.
Circ Res ; 133(1): 25-44, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37264926

RESUMO

BACKGROUND: ERK5 (extracellular signal-regulated kinase 5) is a dual kinase transcription factor containing an N-terminal kinase domain and a C-terminal transcriptional activation domain. Many ERK5 kinase inhibitors have been developed and tested to treat cancer and inflammatory diseases. However, recent data have raised questions about the role of the catalytic activity of ERK5 in proliferation and inflammation. We aimed to investigate how ERK5 reprograms myeloid cells to the proinflammatory senescent phenotype, subsequently leading to atherosclerosis. METHODS: A ERK5 S496A (dephosphorylation mimic) knock in (KI) mouse model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9), and atherosclerosis was characterized by hypercholesterolemia induction. The plaque phenotyping in homozygous ERK5 S496A KI and wild type (WT) mice was studied using imaging mass cytometry. Bone marrow-derived macrophages were isolated from hypercholesterolemic mice and characterized using RNA sequencing and functional in vitro approaches, including senescence, mitochondria reactive oxygen species, and inflammation assays, as well as by metabolic extracellular flux analysis. RESULTS: We show that atherosclerosis was inhibited in ERK5 S496A KI mice. Furthermore, ERK5 S496 phosphorylation mediates both senescence-associated secretory phenotype and senescence-associated stemness by upregulating AHR (aryl hydrocarbon receptor) in plaque and bone marrow-derived macrophages isolated from hypercholesterolemic mice. We also discovered that ERK5 S496 phosphorylation could induce NRF2 (NFE2-related factor 2) SUMOylation at a novel K518 site to inhibit NRF2 transcriptional activity without altering ERK5 catalytic activity and mediates oxidized LDL (low-density lipoprotein)-induced senescence-associated secretory phenotype. Specific ERK5 kinase inhibitors (AX15836 and XMD8-92) also inhibited ERK5 S496 phosphorylation, suggesting the involvement of ERK5 S496 phosphorylation in the anti-inflammatory effects of these ERK5 kinase inhibitors. CONCLUSIONS: We discovered a novel mechanism by which the macrophage ERK5-NRF2 axis develops a unique senescence-associated secretory phenotype/stemness phenotype by upregulating AHR to engender atherogenesis. The finding of senescence-associated stemness phenotype provides a molecular explanation to resolve the paradox of senescence in proliferative plaque by permitting myeloid cells to escape the senescence-induced cell cycle arrest during atherosclerosis formation.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Aterosclerose/metabolismo , Inflamação , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-35801078

RESUMO

Numerous studies have revealed the critical role of premature senescence induced by various cancer treatment modalities in the pathogenesis of aging-related diseases. Senescence-associated secretory phenotype (SASP) can be induced by telomere dysfunction. Telomeric DNA damage response induced by some cancer treatments can persist for months, possibly accounting for long-term sequelae of cancer treatments. Telomeric DNA damage-induced mitochondrial dysfunction and increased reactive oxygen species production are hallmarks of premature senescence. Recently, we reported that the nucleus-mitochondria positive feedback loop formed by p90 ribosomal S6 kinase (p90RSK) and phosphorylation of S496 on ERK5 (a unique member of the mitogen-activated protein kinase family that is not only a kinase but also a transcriptional co-activator) were vital signaling events that played crucial roles in linking mitochondrial dysfunction, nuclear telomere dysfunction, persistent SASP induction, and atherosclerosis. In this review, we will discuss the role of NAD+ depletion in instigating SASP and its downstream signaling and regulatory mechanisms that lead to the premature onset of atherosclerotic cardiovascular diseases in cancer survivors.

5.
Clin Sci (Lond) ; 136(5): 379-382, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35274135

RESUMO

Osteoprotegerin (OPG), also known as osteoclastogenesis inhibitory factor or tumor necrosis factor receptor superfamily member 11B, is well known as a modulator of bone remodeling. The contribution of OPG to cardiovascular disease (CVD) has been suggested, but its molecular mechanism is complex and remains unclear. In the present study, Alves-Lopes et al. (Clin. Sci. (Lond.) (2021) 135(20): https://doi.org/10.1042/CS20210643) reported the critical role of syndecan-1 (SDC-1, also known as CD138), a surface protein part of the endothelial glycocalyx, in OPG-induced vascular dysfunction. The authors found that in endothelial cells (ECs), through SDC-1, OPG increased eNOS Thr495 phosphorylation, thereby inhibiting eNOS activity. Furthermore, the OPG-SDC-1 interaction increased reactive oxygen species (ROS) production through NOX1/4 activation. Both the reduced eNOS activity and induced ROS production inhibited NO production and impaired EC function. In vascular smooth muscle cells (VSMCs), the OPG-SDC-1 interaction increased ROS production through NOX1/4 activation, subsequently increased MLC phosphorylation-mediated Rho kinase-MYPT1 regulation, leading to increased vascular contraction. Ultilizing wire myography and mechanistic studies, the authors nicely provide the evidence that SDC-1 plays a crucial role in OPG-induced vascular dysfunction. As we mentioned above, the molecular mechanism and roles of OPG in cardiovascular system are complex and somewhat confusing. In this commentary, we briefly summarize the OPG-mediated signaling pathways in cardiovascular system.


Assuntos
Células Endoteliais , Osteoprotegerina , Células Endoteliais/metabolismo , Humanos , Inflamação , Osteoprotegerina/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio
6.
Stem Cells Transl Med ; 10(4): 623-635, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33245845

RESUMO

Bone morphogenetic protein 2 (BMP2)-induced heterotopic bone formation (HBF) starts synchronously from zero upon BMP2 induction, which is advantageous for lineage tracking. The studies reported here in GLAST-CreErt2 :tdTomato red (TR)floxSTOPflox mice during BMP2-induced HBF show 78.8 ± 11.6% of chondrocytes and 86.5 ± 1.9% of osteoblasts are TR+ after approximately 1 week. Clustering after single-cell RNAseq resulted in nine cell types, and analysis revealed one as a highly replicating stem-like cell (RSC). Pseudotiming suggested that the RSC transitions to a mesenchymal stem-like cell that simultaneously expresses multiple osteoblast and chondrocyte transcripts (chondro-osseous progenitor [COP]). RSCs and COPs were isolated using flow cytometry for unique surface markers. Isolated RSCs (GLAST-TR+ Hmmr+ Cd200- ) and COPs (GLAST-TR+ Cd200+ Hmmr- ) were injected into the muscle of mice undergoing HBF. Approximately 9% of the cells in heterotopic bone (HB) in mice receiving RSCs were GLAST-TR+ , compared with less than 0.5% of the cells in mice receiving COPs, suggesting that RSCs are many times more potent than COPs. Analysis of donor-derived TR+ RSCs isolated from the engrafted HB showed approximately 50% were COPs and 45% were other cells, presumably mature bone cells, confirming the early nature of the RSCs. We next isolated RSCs from these mice (approximately 300) and injected them into a second animal, with similar findings upon analysis of HBF. Unlike other methodology, single cell RNAseq has the ability to detect rare cell populations such as RSCs. The fact that RSCs can be injected into mice and differentiate suggests their potential utility for tissue regeneration.


Assuntos
Proteína Morfogenética Óssea 2 , Ossificação Heterotópica , Células-Tronco , Animais , Proteína Morfogenética Óssea 2/farmacologia , Diferenciação Celular , Células-Tronco Mesenquimais , Camundongos , Osteoblastos , Células-Tronco/citologia
7.
Mol Pain ; 15: 1744806919838191, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30813850

RESUMO

The formation of neuromas involves expansion of the cellular components of peripheral nerves. The onset of these disorganized tumors involves activation of sensory nerves and neuroinflammation. Particularly problematic in neuroma is arborization of axons leading to extreme, neuropathic pain. The most common sites for neuroma are the ends of transected nerves following injury; however, this rodent model does not reliably result in neuroma formation. In this study, we established a rodent model of neuroma in which the sciatic nerve was loosely ligated with two chromic gut sutures. This model formed neuromas reliably (∼95%), presumably through activation of the neural inflammatory cascade. Resulting neuromas had a disorganized structure and a significant number of replicating cells. Quantification of changes in perineurial and Schwann cells showed a significant increase in these populations. Immunohistochemical analysis showed the presence of ß-tubulin 3 in the rapidly expanding nerve and a decrease in neurofilament heavy chain compared to the normal nerve, suggesting the axons forming a disorganized structure. Measurement of the permeability of the blood-nerve barrier shows that it opened almost immediately and remained open as long as 10 days. Studies using an antagonist of the ß3-adrenergic receptor (L-748,337) or cromolyn showed a significant reduction in tumor size and cell expansion as determined by flow cytometry, with an improvement in the animal's gait detected using a Catwalk system. Previous studies in our laboratory have shown that heterotopic ossification is also a result of the activation of neuroinflammation. Since heterotopic ossification and neuroma often occur together in amputees, they were induced in the same limbs of the study animals. More heterotopic bone was formed in animals with neuromas as compared to those without. These data collectively suggest that perturbation of early neuroinflammation with compounds such as L-748,337 and cromolyn may reduce formation of neuromas.


Assuntos
Neuroma/tratamento farmacológico , Neuroma/metabolismo , Nervo Isquiático/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos beta 3/uso terapêutico , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Linhagem Celular , Citometria de Fluxo , Imuno-Histoquímica , Camundongos , Ratos , Receptores Adrenérgicos beta 3/metabolismo , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo , Tubulina (Proteína)/metabolismo
8.
Methods Mol Biol ; 1891: 19-28, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30414123

RESUMO

The use of an adenoviral vector to transduce cells allows for certain secreted proteins or growth factors to be generated in vivo in eukaryotic cells with accurate posttranslational processing. The use of transduced cells eliminates viral toxicity, allows for targeted expression of the secreted factor at a specific site, and ensures that the therapy will be turned off when the cells are cleared by the organism. Here we describe the delivery system which utilizes cells transduced with a non-replicating adenovirus containing bone morphogenetic protein 2 (BMP-2) in the E1 region of the cassette. With this method of delivery, small amounts of the protein can incite de novo bone formation.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Adenoviridae/genética , Fosfatase Alcalina , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Genética/métodos , Vetores Genéticos/genética , Humanos , Camundongos , Ratos , Transdução Genética
9.
Bone ; 109: 22-27, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28716552

RESUMO

Heterotopic ossification (HO), or de novo bone formation in soft tissue, is often observed following traumatic injury. Recent studies suggest that peripheral nerves may play a key functional role in this process. The results supporting a neurological basis for HO are examined in this article. Evidence supports the fact that BMPs released from bone matrix possess the capacity to induce HO. However, the process cannot be recapitulated using recombinant proteins without extremely high doses suggesting other components are required for this process. Study of injuries that increase risk for HO, i.e. amputation, hip replacement, elbow fracture, burn, and CNS injury suggests that a likely candidate is traumatic injury of adjacent peripheral nerves. Recent studies suggest neuroinflammation may play a key functional role, by its ability to open the blood-nerve barrier (BNB). Barrier opening is characterized by a change in permeability and is experimentally assessed by the ability of Evans blue dye to enter the endoneurium of peripheral nerves. A combination of BMP and barrier opening is required to activate bone progenitors in the endoneurial compartment. This process is referred to as "neurogenic HO".


Assuntos
Ossificação Heterotópica/patologia , Animais , Proteína Morfogenética Óssea 2/metabolismo , Movimento Celular/fisiologia , Humanos , Sistema Nervoso Periférico/citologia , Sistema Nervoso Periférico/metabolismo , Células-Tronco/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
J Orthop Res ; 34(11): 1894-1904, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26919547

RESUMO

Extremity amputation or traumatic injury can often lead to the formation of heterotopic ossification (HO). Studies to induce HO in rat muscle using cell-based gene therapy show that this process appears to be location dependent. In the present study, HO was induced in mice and rats through injection of immunologically matched cells transduced with either a replication-defective adenovirus possessing bone morphogenetic protein 2 (BMP2) or an empty adenovirus vector (control). Injection in rat near the skeletal bone resulted in HO, whereas cells injected into the same muscle group but distal from the bone did not result in bone formation. When cells were injected in the same limb at both locations at the same time, HO was formed at both sites. Characterization of the bone formation in rats versus mice demonstrated that different sources of osteogenic progenitors were involved, which may account for the location dependent bone formation observed in the rat. Further experimentation has shown that a potential reason for this difference may be the inability of rat to activate matrix metalloproteinase 9 (MMP9), an essential protease in mice necessary for recruitment of progenitors. Inhibition of active MMP9 in mice led to a significant decrease in HO. The studies reported here provide insight into the mechanisms and pathways leading to bone formation in different animals and species. It appears that not all animal models are appropriate for testing HO therapies, and our studies also challenge the conventional wisdom that larger animal models are better for testing treatments affecting bone. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1894-1904, 2016.


Assuntos
Metaloproteinase 9 da Matriz/fisiologia , Ossificação Heterotópica , Adenoviridae , Animais , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Humanos , Transplante de Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Ratos Nus , Ratos Wistar
11.
Clin Orthop Relat Res ; 473(9): 2790-806, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25944403

RESUMO

BACKGROUND: Heterotopic ossification (HO) is the process of bone formation at a nonskeletal site. Recently, we showed that the earliest steps occur in sensory nerves. We now extend these studies by identifying unique osteogenic progenitors within the endoneurial compartment of sensory nerves. QUESTIONS/PURPOSES: We asked: (1) What is the nature of the osteoprogenitor in the endoneurium of peripheral nerves? (2) How do osteoprogenitors travel from the nerve to the site of new bone formation? METHODS: HO was induced by intramuscular injection of Ad5BMP-2-transduced cells in mice. Osteoprogenitors were identified through immunohistochemistry and then quantified and further characterized by fluorescence-activated cell sorting and immunocytochemistry. The kinetics of the appearance of markers of extravasation was determined by quantitative reverse transcription-polymerase chain reaction. In each experiment mice were injected with bone morphogenetic protein-2 (BMP-2)-producing cells (experimental) or with cells transduced with empty vector or, in some cases, a group receiving no injection (control). RESULTS: Induction of HO leads to the expression, within 24 hours, of osteoblast-specific transcription factors in cells in the endoneurium followed by their coordinate disappearance from the nerve at 48 hours. They reappear in blood also at 48 hours after induction. During vessel entrance they begin to express the tight junction molecule, claudin 5. The cells expressing both the osteoblast-specific transcription factor, osterix, as well as claudin 5, then disappear from circulation at approximately 3 to 4 days by extravasation into the site of new bone formation. These endoneurial osteoprogenitors express neural markers PDGFRα, musashi-1, and the low-affinity nerve growth factor receptor p75(NTR) as well as the endothelial marker Tie-2. In a key experiment, cells that were obtained from mice that were injected with cells transduced with an empty vector, at 2 days after injection, contained 0.83% (SD, 0.07; 95% confidence interval [CI], 0.59-1.05) cells expressing claudin 5. However, cells that were obtained from mice 2 days after injection of BMP-2-producing cells contained 4.5% cells expressing claudin 5 (SD, 0.72%; 95% CI, 2.01-6.94; p < 0.0015). Further analysis revealed that all of the cells expressing claudin 5 were found to be positive for osteoblast-specific markers, whereas cells not expressing claudin 5 were negative for these same markers. CONCLUSIONS: The findings suggest that the endoneurial progenitors are the major osteogenic precursors that are used for HO. They exit the nerve through the endoneurial vessels, flow through vessels to the site of new bone formation, and then extravasate out of the vessels into this site. CLINICAL RELEVANCE: The biogenesis of osteoblasts in HO is very different than expected and shows that HO is, at least in part, a neurological disorder. This could result in a major shift in orthopaedic methodologies to prevent or treat this disease. The fact that nerves are intimately involved in the process may also provide clues that will lead to an explanation of the clinical fact that HO often occurs as a result of traumatic brain injury.


Assuntos
Linhagem da Célula , Células-Tronco Neurais/patologia , Ossificação Heterotópica/patologia , Osteoblastos/patologia , Células Receptoras Sensoriais/patologia , Adenoviridae/genética , Animais , Biomarcadores/metabolismo , Proteína Morfogenética Óssea 2/biossíntese , Proteína Morfogenética Óssea 2/genética , Movimento Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Vetores Genéticos , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Ossificação Heterotópica/genética , Ossificação Heterotópica/metabolismo , Osteoblastos/metabolismo , RNA Mensageiro/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Transdução Genética
12.
J Orthop Res ; 31(10): 1597-604, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23832813

RESUMO

Current strategies for bone regeneration after traumatic injury often fail to provide adequate healing and integration. Here, we combined the poly (ethylene glycol) diacrylate (PEGDA) hydrogel with allogeneic "carrier" cells transduced with an adenovirus expressing BMP2. The system is unique in that the biomaterial encapsulates the cells, shielding them and thus suppressing destructive inflammatory processes. Using this system, complete healing of a 5 mm-long femur defect in a rat model occurs in under 3 weeks, through secretion of 100-fold lower levels of protein as compared to doses of recombinant BMP2 protein used in studies which lead to healing in 2-3 months. New bone formation was evaluated radiographically, histologically, and biomechanically at 2, 3, 6, 9, and 12 weeks after surgery. Rapid bone formation bridged the defect area and reliably integrated into the adjacent skeletal bone as early as 2 weeks. At 3 weeks, biomechanical analysis showed the new bone to possess 79% of torsional strength of the intact contralateral femur. Histological evaluation showed normal bone healing, with no infiltration of inflammatory cells with the bone being stable approximately 1 year later. We propose that these osteoinductive microspheres offer a more efficacious and safer clinical option over the use of rhBMP2.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Fraturas do Fêmur/tratamento farmacológico , Consolidação da Fratura/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Fenômenos Biomecânicos/fisiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Composição de Medicamentos/métodos , Fraturas do Fêmur/diagnóstico por imagem , Fraturas do Fêmur/fisiopatologia , Fêmur/efeitos dos fármacos , Fêmur/fisiologia , Fibroblastos/citologia , Consolidação da Fratura/fisiologia , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Microesferas , Radiografia , Ratos , Ratos Wistar , Pele/citologia , Células Estromais/citologia
13.
Pathol Res Pract ; 208(11): 642-50, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23017666

RESUMO

The calcification process in aortic stenosis has garnered considerable interest but only limited investigation into selected signaling pathways. This study investigated mechanisms related to hypoxia, hyaluronan homeostasis, brown adipocytic differentiation, and ossification within calcified valves. Surgically explanted calcified aortic valves (n=14) were immunostained for markers relevant to these mechanisms and evaluated in the center (NodCtr) and edge (NodEdge) of the calcified nodule (NodCtr), tissue directly surrounding nodule (NodSurr); center and tissue surrounding small "prenodules" (PreNod, PreNodSurr); and normal fibrosa layer (CollFibr). Pearson correlations were determined between staining intensities of markers within regions. Ossification markers primarily localized to NodCtr and NodEdge, along with markers related to hyaluronan turnover and hypoxia. Markers of brown adipocytic differentiation were frequently co-localized with markers of hypoxia. In NodCtr and NodSurr, brown fat and ossification markers correlated with hyaluronidase-1, whereas these markers, as well as hypoxia, correlated with hyaluronan synthases in NodEdge. The protein product of tumor necrosis factor-α stimulated gene-6 strongly correlated with ossification markers and hyaluronidase in the regions surrounding the nodules (NodSurr, PreNodSurr). In conclusion, this study suggests roles for hyaluronan homeostasis and the promotion of hypoxia by cells demonstrating brown fat markers in calcific aortic valve disease.


Assuntos
Adipócitos Marrons/patologia , Estenose da Valva Aórtica/metabolismo , Valva Aórtica/metabolismo , Calcinose/metabolismo , Ácido Hialurônico/metabolismo , Hipóxia/metabolismo , Ossificação Heterotópica/patologia , Adipócitos Marrons/metabolismo , Idoso , Valva Aórtica/patologia , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/patologia , Biomarcadores/metabolismo , Calcinose/etiologia , Calcinose/patologia , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Feminino , Glucuronosiltransferase/metabolismo , Homeostase/fisiologia , Humanos , Hialuronan Sintases , Hialuronoglucosaminidase/metabolismo , Masculino , Ossificação Heterotópica/metabolismo
14.
Hum Pathol ; 43(12): 2213-22, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22748303

RESUMO

The disease mechanisms and histology of plaque development associated with atherosclerosis remain incredibly complex and not entirely understood. Recent investigations have emphasized the importance of inflammation in atherosclerosis. Several studies have also indicated heterotopic or extraskeletal bone formation in atherosclerotic vessels. The mechanisms behind heterotopic ossification appear to have similarities to those underlying atherosclerosis, with inflammation being a key inductive component to heterotopic ossification. Therefore, in the present study, we evaluated the histology associated with pathologies of atherosclerosis and heterotopic ossification in 271 coronary vessel tissue samples. We examined the prevalence and features of the inflammatory response as well as new vessel and bone formation. Inflammation and neovascularization were observed both in the adventitia and within the atherosclerotic lesions of the vessels themselves. Intriguingly, neural changes, including collections of inflammatory cells and expression of neuroinflammatory factors, were detected in the adventitial nerves of the vessels. Mature lamellar bone was found in 18 coronary vessels (7%), often with hematopoietic elements and active bone remodeling. Brown adipocytes, which pattern heterotopic bone formation, were present within the atherosclerotic lesions (28%, or 75/271). As expected, there was a strong correlation between the presence of cholesterol and plaque formation (P < .0001), but there also seemed to be a trend toward a connection between the presence of brown adipocytes and plaque. From this histologic evaluation, along with cholesterol and dystrophic calcification, we noted a novel appearance of brown adipocytes as well as neural changes, which may provide new insights to further our understanding of atherosclerosis.


Assuntos
Tecido Adiposo Marrom/patologia , Aterosclerose/patologia , Vasos Coronários/patologia , Ossificação Heterotópica/patologia , Nervos Periféricos/patologia , Doença da Artéria Coronariana/patologia , Humanos , Inflamação/patologia , Placa Aterosclerótica/patologia , Túnica Íntima/patologia , Túnica Média/patologia
15.
Int J Biomater ; 2012: 861794, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22500171

RESUMO

Autologous bone grafting is the most effective treatment for long-bone nonunions, but it poses considerable risks to donors, necessitating the development of alternative therapeutics. Poly(ethylene glycol) (PEG) microencapsulation and BMP2 transgene delivery are being developed together to induce rapid bone formation. However, methods to make these treatments available for clinical applications are presently lacking. In this study we used mesenchymal stem cells (MSCs) due to their ease of harvest, replication potential, and immunomodulatory capabilities. MSCs were from sheep and pig due to their appeal as large animal models for bone nonunion. We demonstrated that cryopreservation of these microencapsulated MSCs did not affect their cell viability, adenoviral BMP2 production, or ability to initiate bone formation. Additionally, microspheres showed no appreciable damage from cryopreservation when examined with light and electron microscopy. These results validate the use of cryopreservation in preserving the viability and functionality of PEG-encapsulated BMP2-transduced MSCs.

16.
Stem Cells Transl Med ; 1(12): 874-85, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23283549

RESUMO

Perineurial-associated brown adipocyte-like cells were rapidly generated during bone morphogenetic protein 2 (BMP2)-induced sciatic nerve remodeling in the mouse. Two days after intramuscular injection of transduced mouse fibroblast cells expressing BMP2 into wild-type mice, there was replication of beta-3 adrenergic receptor(+) (ADRB3(+)) cells within the sciatic nerve perineurium. Fluorescence-activated cell sorting and analysis of cells isolated from these nerves confirmed ADRB3(+) cell expansion and their expression of the neural migration marker HNK1. Similar analysis performed 4 days after BMP2 delivery revealed a significant decrease in ADRB3(+) cells from isolated sciatic nerves, with their concurrent appearance within the adjacent soft tissue, suggesting migration away from the nerve. These soft tissue-derived cells also expressed the brown adipose marker uncoupling protein 1 (UCP1). Quantification of ADRB3-specific RNA in total hind limb tissue revealed a 3-fold increase 2 days after delivery of BMP2, followed by a 70-fold increase in UCP1-specific RNA after 3 days. Expression levels then rapidly returned to baseline by 4 days. Interestingly, these ADRB3(+) UCP1(+) cells also expressed the neural guidance factor reelin. Reelin(+) cells demonstrated distinct patterns within the injected muscle, concentrated toward the area of BMP2 release. Blocking mast cell degranulation-induced nerve remodeling resulted in the complete abrogation of UCP1-specific RNA and protein expression within the hind limbs following BMP2 injection. The data collectively suggest that local BMP2 administration initiates a cascade of events leading to the expansion, migration, and differentiation of progenitors from the peripheral nerve perineurium to brown adipose-like cells in the mouse, a necessary prerequisite for associated nerve remodeling.


Assuntos
Adipócitos Marrons/citologia , Proteína Morfogenética Óssea 2/genética , Regeneração Nervosa/fisiologia , Nervos Periféricos/citologia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Adenoviridae/genética , Adipócitos Marrons/fisiologia , Fatores Etários , Animais , Moléculas de Adesão Celular Neuronais/genética , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Linhagem da Célula/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Proteínas da Matriz Extracelular/genética , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Canais Iônicos/genética , Mastócitos/citologia , Mastócitos/fisiologia , Camundongos , Proteínas Mitocondriais/genética , Proteínas do Tecido Nervoso/genética , Norepinefrina/metabolismo , Nervos Periféricos/fisiologia , Receptores Adrenérgicos beta 3/genética , Proteína Reelina , Serina Endopeptidases/genética , Células-Tronco/fisiologia , Transgenes/genética , Proteína Desacopladora 1
18.
Tissue Eng Part A ; 17(19-20): 2487-96, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21599541

RESUMO

Heterotopic ossification (HO) is a serious disorder that occurs when there is aberrant bone morphogenic protein (BMP) signaling in soft tissues. Currently, there are no methods to detect HO before mineralization occurs. Yet once mineralization occurs, there are no effective treatments, short of surgery, to reverse HO. Herein, we used in vivo molecular imaging and confirmatory ex vivo tissue analyses of an established murine animal model of BMP-induced HO to show that matrix metalloproteinase-9 (MMP-9) can be detected as an early-stage biomarker before mineralization. Ex vivo analyses show that active MMP-9 protein is significantly elevated within tissues undergoing HO as early as 48 h after BMP induction, with its expression co-localizing to nerves and vessels. In vivo molecular imaging with a dual-labeled near-infrared fluorescence and micro-positron emission tomography (µPET) agent specific to MMP-2/-9 expression paralleled the ex vivo observations and reflected the site of HO formation as detected from microcomputed tomography 7 days later. The results suggest that the MMP-9 is a biomarker of the early extracellular matrix (ECM) re-organization and could be used as an in vivo diagnostic with confirmatory ex vivo tissue analysis for detecting HO or conversely for monitoring the success of tissue-engineered bone implants that employ ECM biology for engraftment.


Assuntos
Metaloproteinase 9 da Matriz/metabolismo , Ossificação Heterotópica/diagnóstico , Ossificação Heterotópica/enzimologia , Sequência de Aminoácidos , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Imunofluorescência , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Membro Posterior/efeitos dos fármacos , Membro Posterior/patologia , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Camundongos , Imagem Molecular , Dados de Sequência Molecular , Imagem Multimodal , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Tomografia por Emissão de Pósitrons , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho , Tomografia Computadorizada por Raios X
19.
J Biomed Mater Res A ; 98(1): 53-62, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21523904

RESUMO

We propose a new strategy of biomaterial design to achieve selective cellular degradation by the incorporation of cathepsin K-degradable peptide sequences into a scaffold structure so that scaffold biodegradation can be induced at the end of the bone formation process. Poly(ethylene glycol) diacrylate (PEGDA) hydrogels were used as a model biomaterial system in this study. A cathepsin K-sensitive peptide, GGGMGPSGPWGGK (GPSG), was synthesized and modified with acryloyl-PEG-succinimidyl carbonate to produce a cross-linkable cathepsin K-sensitive polymer that can be used to form a hydrogel. Specificity of degradation of the GPSG hydrogels was tested with cathepsin K and proteinase K as a positive control, with both resulting in significant degradation compared to incubation with nonspecific collagenases over a 24-h time period. No degradation was observed when the hydrogels were incubated with plasmin or control buffers. Cell-induced degradation was evaluated by seeding differentiated MC3T3-E1 osteoblasts and RAW264.7 osteoclasts on GPSG hydrogels that were also modified with the cell adhesion peptide RGDS. Resulting surface features and resorption pits were analyzed by differential interference contrast (DIC) and fluorescent images obtained with confocal microscopy. Results from both analyses demonstrated that GPSG hydrogels can be degraded specifically in response to osteoclast attachment but not in response to osteoblasts. In summary, we have demonstrated that by incorporating a cathepsin K-sensitive peptide into a synthetic polymer structure, we can generate biomaterials that specifically respond to cues from the natural process of bone remodeling.


Assuntos
Reabsorção Óssea/patologia , Catepsina K/metabolismo , Hidrogéis/farmacologia , Polietilenoglicóis/farmacologia , Fosfatase Ácida/metabolismo , Sequência de Aminoácidos , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Diferenciação Celular/efeitos dos fármacos , Hidrogéis/síntese química , Hidrogéis/química , Processamento de Imagem Assistida por Computador , Isoenzimas/metabolismo , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/enzimologia , Osteoclastos/patologia , Peptídeos/química , Peptídeos/farmacologia , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Propriedades de Superfície/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato
20.
Spine J ; 11(6): 545-56, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21292563

RESUMO

BACKGROUND CONTEXT: Bone morphogenetic proteins (BMPs) induce bone formation but are difficult to localize, and subsequent diffusion from the site of interest and short half-life reduce the efficacy of the protein. Currently, spine fusion requires stripping, decortications of the transverse processes, and an autograft harvest procedure. Even in combination with BMPs, clinical spinal fusion has a high failure rate, presumably because of difficulties in localizing sufficient levels of BMP. PURPOSE: The goal was to achieve reliable spine fusion through a single injection of a cell-based gene therapy system without the need for any surgical intervention. STUDY DESIGN: Eighty-seven immunodeficient (n=44) and immune-competent (n=43) mice were injected along the paraspinous musculature to achieve rapid induction of heterotopic ossification (HO) and ultimately spinal arthrodesis. METHODS: Immunodeficient and immune-competent mice were injected with fibroblasts, transduced with an adenoviral vector to express BMP2, along the paraspinous musculature. Bone formation was evaluated via radiographs, microcomputed tomography, and biomechanical analysis. RESULTS: ew bridging bone between the vertebrae and the fusion to adjacent skeletal bone was obtained as early as 2 weeks. Reduction in spine flexion-extension also occurred as early as 2 weeks after injection of the gene therapy system, with greater than 90% fusion by 4 weeks in all animals regardless of their genetic background. CONCLUSIONS: Injection of our cell-based system into the paraspinous musculature induces spinal fusion that is dependent neither on the cell type nor on the immune status. These studies are the first to harness HO in an immune-competent model as a noninvasive injectable system for clinically relevant spinal fusion and may one day impact human spinal arthrodesis.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Terapia Genética/métodos , Fusão Vertebral/métodos , Adenoviridae , Animais , Proteína Morfogenética Óssea 2/genética , Fibroblastos/metabolismo , Vetores Genéticos , Humanos , Camundongos , Osteogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA