Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med ; 4(10): 668-686.e7, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37572659

RESUMO

BACKGROUND: RH5 is a leading blood-stage candidate antigen for a Plasmodium falciparum vaccine; however, its safety and immunogenicity in malaria-endemic populations are unknown. METHODS: A phase 1b, single-center, dose-escalation, age-de-escalation, double-blind, randomized, controlled trial was conducted in Bagamoyo, Tanzania (NCT03435874). Between 12th April and 25th October 2018, 63 healthy adults (18-35 years), young children (1-6 years), and infants (6-11 months) received a priming dose of viral-vectored ChAd63 RH5 or rabies control vaccine. Sixty participants were boosted with modified vaccinia virus Ankara (MVA) RH5 or rabies control vaccine 8 weeks later and completed 6 months of follow-up post priming. Primary outcomes were the number of solicited and unsolicited adverse events post vaccination and the number of serious adverse events over the study period. Secondary outcomes included measures of the anti-RH5 immune response. FINDINGS: Vaccinations were well tolerated, with profiles comparable across groups. No serious adverse events were reported. Vaccination induced RH5-specific cellular and humoral responses. Higher anti-RH5 serum immunoglobulin G (IgG) responses were observed post boost in young children and infants compared to adults. Vaccine-induced antibodies showed growth inhibition activity (GIA) in vitro against P. falciparum blood-stage parasites; their highest levels were observed in infants. CONCLUSIONS: The ChAd63-MVA RH5 vaccine shows acceptable safety and reactogenicity and encouraging immunogenicity in children and infants residing in a malaria-endemic area. The levels of functional GIA observed in RH5-vaccinated infants are the highest reported to date following human vaccination. These data support onward clinical development of RH5-based blood-stage vaccines to protect against clinical malaria in young African infants. FUNDING: Medical Research Council, London, UK.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Adulto , Criança , Pré-Escolar , Humanos , Lactente , Adenovirus dos Símios , Anticorpos Antivirais , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Raiva , Tanzânia , Adolescente , Adulto Jovem , Método Duplo-Cego
2.
Expert Rev Vaccines ; 22(1): 964-1007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37571809

RESUMO

INTRODUCTION: Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED: Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION: First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Gravidez , Criança , Animais , Humanos , Feminino , Esporozoítos , Ciência Translacional Biomédica , Vacinas Atenuadas , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Imunização
4.
Am J Trop Med Hyg ; 109(1): 138-146, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37160281

RESUMO

The radiation-attenuated Plasmodium falciparum sporozoites (PfSPZ) Vaccine has demonstrated safety and immunogenicity in 5-month-old to 50-year-old Africans in multiple trials. Except for one, each trial has restricted enrollment to either infants and children or adults < 50 years old. This trial was conducted in Equatorial Guinea and assessed the safety, tolerability, and immunogenicity of three direct venous inoculations of 1.8 × 106 or 2.7 × 106 PfSPZ, of PfSPZ Vaccine, or normal saline administered at 8-week intervals in a randomized, double-blind, placebo-controlled trial stratified by age (6-11 months and 1-5, 6-10, 11-17, 18-35, and 36-61 years). All doses were successfully administered. In all, 192/207 injections (93%) in those aged 6-61 years were rated as causing no or mild pain. There were no significant differences in solicited adverse events (AEs) between vaccinees and controls in any age group (P ≥ 0.17). There were no significant differences between vaccinees and controls with respect to the rates or severity of unsolicited AEs or laboratory abnormalities. Development of antibodies to P. falciparum circumsporozoite protein occurred in 67/69 vaccinees (97%) and 0/15 controls. Median antibody levels were highest in infants and 1-5-year-olds and declined progressively with age. Antibody responses in children were greater than in adults protected against controlled human malaria infection. Robust immunogenicity, combined with a benign AE profile, indicates children are an ideal target for immunization with PfSPZ Vaccine.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Animais , Adulto , Humanos , Criança , Lactente , Pré-Escolar , Pessoa de Meia-Idade , Plasmodium falciparum , Malária Falciparum/prevenção & controle , Esporozoítos , Vacinas Atenuadas , Guiné Equatorial , Método Duplo-Cego , Imunogenicidade da Vacina
5.
Front Immunol ; 14: 1193079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38299155

RESUMO

We have previously reported primary endpoints of a clinical trial testing two vaccine platforms for the delivery of Plasmodium vivax malaria DBPRII: viral vectors (ChAd63, MVA), and protein/adjuvant (PvDBPII with 50µg Matrix-M™ adjuvant). Delayed boosting was necessitated due to trial halts during the pandemic and provides an opportunity to investigate the impact of dosing regimens. Here, using flow cytometry - including agnostic definition of B cell populations with the clustering tool CITRUS - we report enhanced induction of DBPRII-specific plasma cell and memory B cell responses in protein/adjuvant versus viral vector vaccinees. Within protein/adjuvant groups, delayed boosting further improved B cell immunogenicity compared to a monthly boosting regimen. Consistent with this, delayed boosting also drove more durable anti-DBPRII serum IgG. In an independent vaccine clinical trial with the P. falciparum malaria RH5.1 protein/adjuvant (50µg Matrix-M™) vaccine candidate, we similarly observed enhanced circulating B cell responses in vaccinees receiving a delayed final booster. Notably, a higher frequency of vaccine-specific (putatively long-lived) plasma cells was detected in the bone marrow of these delayed boosting vaccinees by ELISPOT and correlated strongly with serum IgG. Finally, following controlled human malaria infection with P. vivax parasites in the DBPRII trial, in vivo growth inhibition was observed to correlate with DBPRII-specific B cell and serum IgG responses. In contrast, the CD4+ and CD8+ T cell responses were impacted by vaccine platform but not dosing regimen and did not correlate with in vivo growth inhibition in a challenge model. Taken together, our DBPRII and RH5 data suggest an opportunity for protein/adjuvant dosing regimen optimisation in the context of rational vaccine development against pathogens where protection is antibody-mediated.


Assuntos
Malária Vivax , Vacinas , Humanos , Plasmodium falciparum , Medula Óssea , Antígenos de Protozoários , Adjuvantes Imunológicos , Malária Vivax/prevenção & controle , Imunoglobulina G
6.
BMC Med ; 20(1): 28, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35081974

RESUMO

BACKGROUND: Understanding the age patterns of disease is necessary to target interventions to maximise cost-effective impact. New malaria chemoprevention and vaccine initiatives target young children attending routine immunisation services. Here we explore the relationships between age and severity of malaria hospitalisation versus malaria transmission intensity. METHODS: Clinical data from 21 surveillance hospitals in East Africa were reviewed. Malaria admissions aged 1 month to 14 years from discrete administrative areas since 2006 were identified. Each site-time period was matched to a model estimated community-based age-corrected parasite prevalence to provide predictions of prevalence in childhood (PfPR2-10). Admission with all-cause malaria, severe malaria anaemia (SMA), respiratory distress (RD) and cerebral malaria (CM) were analysed as means and predicted probabilities from Bayesian generalised mixed models. RESULTS: 52,684 malaria admissions aged 1 month to 14 years were described at 21 hospitals from 49 site-time locations where PfPR2-10 varied from < 1 to 48.7%. Twelve site-time periods were described as low transmission (PfPR2-10 < 5%), five low-moderate transmission (PfPR2-10 5-9%), 20 moderate transmission (PfPR2-10 10-29%) and 12 high transmission (PfPR2-10 ≥ 30%). The majority of malaria admissions were below 5 years of age (69-85%) and rare among children aged 10-14 years (0.7-5.4%) across all transmission settings. The mean age of all-cause malaria hospitalisation was 49.5 months (95% CI 45.1, 55.4) under low transmission compared with 34.1 months (95% CI 30.4, 38.3) at high transmission, with similar trends for each severe malaria phenotype. CM presented among older children at a mean of 48.7 months compared with 39.0 months and 33.7 months for SMA and RD, respectively. In moderate and high transmission settings, 34% and 42% of the children were aged between 2 and 23 months and so within the age range targeted by chemoprevention or vaccines. CONCLUSIONS: Targeting chemoprevention or vaccination programmes to areas where community-based parasite prevalence is ≥10% is likely to match the age ranges covered by interventions (e.g. intermittent presumptive treatment in infancy to children aged 2-23 months and current vaccine age eligibility and duration of efficacy) and the age ranges of highest disease burden.


Assuntos
Malária Cerebral , Malária Falciparum , Adolescente , África Oriental/epidemiologia , Teorema de Bayes , Criança , Pré-Escolar , Hospitalização , Humanos , Lactente , Malária Cerebral/epidemiologia , Malária Falciparum/epidemiologia , Fenótipo
7.
Am J Trop Med Hyg ; 104(1): 283-293, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33205741

RESUMO

Plasmodium falciparum sporozoite (PfSPZ) Vaccine (radiation-attenuated, aseptic, purified, cryopreserved PfSPZ) and PfSPZ-CVac (infectious, aseptic, purified, cryopreserved PfSPZ administered to subjects taking weekly chloroquine chemoprophylaxis) have shown vaccine efficacies (VEs) of 100% against homologous controlled human malaria infection (CHMI) in nonimmune adults. Plasmodium falciparum sporozoite-CVac has never been assessed against CHMI in African vaccinees. We assessed the safety, immunogenicity, and VE against homologous CHMI of three doses of 2.7 × 106 PfSPZ of PfSPZ Vaccine at 8-week intervals and three doses of 1.0 × 105 PfSPZ of PfSPZ-CVac at 4-week intervals with each arm randomized, double-blind, placebo-controlled, and conducted in parallel. There were no differences in solicited adverse events between vaccinees and normal saline controls, or between PfSPZ Vaccine and PfSPZ-CVac recipients during the 6 days after administration of investigational product. However, from days 7-13, PfSPZ-CVac recipients had significantly more AEs, probably because of Pf parasitemia. Antibody responses were 2.9 times higher in PfSPZ Vaccine recipients than PfSPZ-CVac recipients at time of CHMI. Vaccine efficacy at a median of 14 weeks after last PfSPZ-CVac dose was 55% (8 of 13, P = 0.051) and at a median of 15 weeks after last PfSPZ Vaccine dose was 27% (5 of 15, P = 0.32). The higher VE in PfSPZ-CVac recipients of 55% with a 27-fold lower dose was likely a result of later stage parasite maturation in the liver, leading to induction of cellular immunity against a greater quantity and broader array of antigens.


Assuntos
Imunogenicidade da Vacina , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Adolescente , Adulto , Idoso , Animais , Anticorpos Antiprotozoários , Antimaláricos/uso terapêutico , Criança , Pré-Escolar , Cloroquina/uso terapêutico , Método Duplo-Cego , Guiné Equatorial/epidemiologia , Feminino , Humanos , Imunização , Lactente , Vacinas Antimaláricas/efeitos adversos , Masculino , Pessoa de Meia-Idade , Parasitemia , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia , Adulto Jovem
8.
Am J Trop Med Hyg ; 104(2): 695-699, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33236704

RESUMO

Providing medical care for participants in clinical trials in resource-limited settings can be challenging and costly. Evaluation and treatment of a young man who developed cervical lymphadenopathy during a malaria vaccine trial in Equatorial Guinea required concerted efforts of a multinational, multidisciplinary team. Once a diagnosis of diffuse large B-cell lymphoma was made, the patient was taken to India to receive immunochemotherapy. This case demonstrates how high-quality medical care was provided for a serious illness that occurred during a trial that was conducted in a setting in which positron emission tomography for diagnostic staging, an oncologist for supervision of treatment, and an optimal therapeutic intervention were not available. Clinical researchers should anticipate the occurrence of medical conditions among study subjects, clearly delineate the extent to which health care will be provided, and set aside funds commensurate with those commitments.


Assuntos
Serviços Técnicos Hospitalares , Linfoma Difuso de Grandes Células B/diagnóstico , Vacinas Antimaláricas/administração & dosagem , Malária/prevenção & controle , Adulto , Ensaios Clínicos Fase I como Assunto , Guiné Equatorial/epidemiologia , Humanos , Índia , Linfoma Difuso de Grandes Células B/terapia , Malária/epidemiologia , Masculino , Centros de Atenção Terciária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA