Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anim Microbiome ; 6(1): 20, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650043

RESUMO

BACKGROUND: Treponeme-Associated Hoof Disease (TAHD) is a polybacterial, multifactorial disease affecting free-ranging wild elk (Cervus canadensis) in the Pacific Northwest. Previous studies have indicated a bacterial etiology similar to digital dermatitis in livestock, including isolation of Treponema species from lesions. The lesions appear to progress rapidly from ulcerative areas in the interdigital space or along the coronary band to severe, ulcerative, necrotic, proliferative lesions under-running the hoof wall, perforating the sole, and contributing to hoof elongation, deformity, and overgrowth. Eventually the lesions undermine the laminal structure leading to sloughing of the hoof horn capsule. The objective of this study was to characterize the bacterial communities associated with hoof lesions, which were categorized into 5 stages or disease grade severities, with 0 being unaffected tissue and 4 being sloughed hoof capsule. We also wanted to determine if the etiology of TAHD through morphological changes was dominated by Treponema, as observed in hoof diseases in livestock. RESULTS: The bacterial 16S rRNA gene was sequenced from 66 hoof skin biopsy samples representing 5 lesion grades from samples collected by Washington Department of Fish and Wildlife as part of a voluntary hunter program. Analysis of the relative abundance of bacterial sequences showed that lesions were dominated by members of the bacterial phyla Proteobacteria, Firmicutes, Spirochaetes, Bacteroidetes and Actinobacteria. In lesion samples, members of the genus Treponema, Porphyromonas, and Mycoplasma increased with lesion severity. Association analysis indicated frequent identification of Treponema with Porphyromonas, Bacteroides and other anaerobic Gram-positive cocci. CONCLUSIONS: The bacterial 16S rRNA gene sequencing confirmed the presence of Treponema species at all stages of TAHD lesions, treponeme specie-specific PCR and histopathology, indicating that the morphological changes are a continual progression of disease severity with similar bacterial communities. Association and abundance of these other pathogenic genera within lesions may mean synergistic role with Treponema in hoof disease pathogenesis. Characterizing bacteria involved in lesion development, and their persistence during disease progression, provides evidence for science-based management decisions in TAHD infected elk populations.

2.
J Vet Diagn Invest ; 35(2): 193-195, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36476245

RESUMO

Hamartomas are benign tumor-like lesions composed of disorganized growth of mature mesenchymal or epithelial tissues indigenous to the organ involved. Sporadically observed in ruminants, vascular, fibrous, nasal, and pulmonary hamartomas have been reported in calves; pulmonary and cutaneous forms have been reported in sheep. A full-term elk calf found dead had a large intrathoracic mass replacing the left caudal lung lobe and compressing other thoracic organs. Histologically, cross- and tangential sections of bronchi were separated by collagenous mesenchyme and irregularly shaped canaliculi and saccules resembling terminal bronchioles. Rarely present were regions in which saccules, lined by simple cuboidal epithelium, transitioned into attenuated epithelium lining fully developed alveoli. These findings are consistent with a pulmonary hamartoma. To our knowledge, pulmonary hamartoma has not been reported previously in a non-domestic ruminant.


Assuntos
Cervos , Hamartoma , Neoplasias Pulmonares , Animais , Epitélio , Hamartoma/diagnóstico , Hamartoma/patologia , Hamartoma/veterinária , Neoplasias Pulmonares/veterinária , Nariz , Alvéolos Pulmonares , Ovinos , Doenças dos Ovinos , Animais Selvagens , Evolução Fatal
3.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33688053

RESUMO

Cattle are natural hosts of the intracellular pathogen Brucella abortus, which inflicts a significant burden on the health and reproduction of these important livestock. The primary routes of infection in field settings have been described, but it is not known how the bovine host shapes the structure of B. abortus populations during infection. We utilized a library of uniquely barcoded B. abortus strains to temporally and spatially quantify population structure during colonization of cattle through a natural route of infection. Introducing 108 bacteria from this barcoded library to the conjunctival mucosa resulted in expected levels of local lymph node colonization at a 1-wk time point. We leveraged variance in strain abundance in the library to demonstrate that only 1 in 10,000 brucellae introduced at the site of infection reached a parotid lymph node. Thus, cattle restrict the overwhelming majority of B. abortus introduced via the ocular conjunctiva at this dose. Individual strains were spatially restricted within the host tissue, and the total B. abortus census was dominated by a small number of distinct strains in each lymph node. These results define a bottleneck that B. abortus must traverse to colonize local lymph nodes from the conjunctival mucosa. The data further support a model in which a small number of spatially isolated granulomas founded by unique strains are present at 1 wk postinfection. These experiments demonstrate the power of barcoded transposon tools to quantify infection bottlenecks and to define pathogen population structure in host tissues.


Assuntos
Brucella abortus/fisiologia , Brucelose/veterinária , Doenças dos Bovinos/microbiologia , Animais , Brucella abortus/genética , Brucella abortus/crescimento & desenvolvimento , Brucella abortus/patogenicidade , Brucelose/microbiologia , Bovinos , Feminino , Linfonodos/microbiologia , Virulência
4.
Innate Immun ; 26(4): 301-311, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31711335

RESUMO

Inflammasomes act as sensors of infection or damage to initiate immune responses. While extensively studied in rodents, understanding of livestock inflammasomes is limited. The NLRP1 inflammasome sensor in rodents is activated by Toxoplasma gondii, Bacillus anthracis lethal toxin (LT), and potentially other zoonotic pathogens. LT activates NLRP1 by N-terminal proteolysis, inducing macrophage pyroptosis and a pro-inflammatory cytokine response. In contrast, NLRP1 in macrophages from humans and certain rodent strains is resistant to LT cleavage, and pyroptosis is not induced. Evolution of NLRP1 sequences towards those leading to pyroptosis is of interest in understanding innate immune responses in different hosts. We characterized NLRP1 in cattle (Bos taurus) and American bison (Bison bison). Bovine NLRP1 is not cleaved by LT, and cattle and bison macrophages do not undergo toxin-induced pyroptosis. Additionally, we found a predicted Nlrp1 splicing isoform in cattle macrophages lacking the N-terminal domain. Resistance to LT in bovine and human NLRP1 correlates with evolutionary sequence similarity to rodents. Consistent with LT-resistant rodents, bovine macrophages undergo a slower non-pyroptotic death in the presence of LPS and LT. Overall, our findings support the model that NLRP1 activation by LT requires N-terminal cleavage, and provide novel information on mechanisms underlying immune response diversity.


Assuntos
Antraz/imunologia , Bacillus anthracis/fisiologia , Bison/imunologia , Bovinos/imunologia , Inflamassomos/metabolismo , Macrófagos/imunologia , Proteínas NLR/metabolismo , Toxoplasma/fisiologia , Toxoplasmose/imunologia , Animais , Antígenos de Bactérias/metabolismo , Apoptose , Toxinas Bacterianas/metabolismo , Caspase 1/metabolismo , Células Cultivadas , Imunidade Inata , Proteólise , Especificidade da Espécie
5.
J Anim Sci ; 97(1): 111-121, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30329060

RESUMO

The effect of a DNA immunostimulant on inflammatory and immune responses, performance, and health in calves following abrupt weaning and introduction to a concentrate diet was tested. Sixty-four single source Angus crossbred steers were weaned on day 1 and assigned to receive a DNA immunostimulant (TRT) or saline (CON) on days 0, 2, 4, and 6. On day 0, steers received clostridial and respiratory vaccines and anthelmintic; they were then transported 2 h, allocated to pens (n = 8 per pen), and introduced to total mixed ration. Daily intake, ADG, and feed efficiency were measured. Serum haptoglobin, tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1ß) were assayed by ELISA or AlphaLISA on days 0, 2, 4, 6, 14, and 28; serum-neutralizing antibodies (SNA) to bovine herpesvirus-1 and bovine viral diarrhea virus-1 (BVDV-1) were quantified on days 0, 28, 68, and 135. In a subset of cattle (n = 6 to 8 per treatment group), the percent macrophages and activated gamma delta (γδ) T cells in blood was determined by flow cytometry on days 2 and 6, and expression of mRNA for TNF-α, interferon-gamma (IFN-γ), IL-4, and IL-10 by stimulated blood mononuclear cells was assessed by real-time reverse transcriptase PCR on day 6. After 70 d, cattle were shipped 1,205 km to a feedlot and performance and health were followed. There was a significant effect of time on serum TNF-α, IL-1ß, haptoglobin, and SNA (P < 0.001); the range in concentration among cattle on each day was large. The ratio of IFN-γ to IL-4 expression was significantly higher (P = 0.03) for TRT cattle, suggesting that treatment activated T-helper type 1 cells. There was a trend toward an improved feed conversion (P = 0.10) for TRT steers over the 70-d backgrounding period. There was no effect of treatment on feedlot performance or carcass merit (P > 0.10). During backgrounding, 1 TRT steer died of enterocolitis. In spite of backgrounding, cattle experienced an outbreak of bovine respiratory disease (BRD) in the feedlot and 1 of 31 TRT cattle and 5 of 32 CON cattle died of BRD. The immunostimulant modified some immune responses during backgrounding. Large variability in inflammatory responses during backgrounding indicated that events around weaning induce systemic inflammation that varies substantially among cattle.


Assuntos
Adjuvantes Imunológicos/farmacologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Doenças dos Bovinos/imunologia , Vírus da Diarreia Viral Bovina Tipo 1/imunologia , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/imunologia , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Doenças dos Bovinos/virologia , Citocinas/genética , Citocinas/metabolismo , DNA/farmacologia , Dieta/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Haptoglobinas/metabolismo , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Mediadores da Inflamação/metabolismo , Masculino
6.
J Dairy Sci ; 101(9): 8301-8307, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29908808

RESUMO

Digital dermatitis is an infectious disease of cattle and the leading cause of lameness. This disease is complicated by the reoccurrence of the lesions and the observation of lesions on more than one limb at different time points, indicating infection may not result in a protective immune response. The objective of this study was to characterize the peripheral blood cellular response in naturally infected and naïve cattle to bacterial antigens derived from pathogens associated with digital dermatitis lesions. Peripheral blood mononuclear cells were isolated from dairy cattle identified as having active or chronic lesions during routine hoof-trimming. Following bacterial antigen stimulation, cells were analyzed for proliferation and phenotype by flow cytometry, and culture supernatants were analyzed for IFN-γ secretion. Digital-dermatitis-infected animals had greater serum antibody titers to treponemal antigens, higher percentages of proliferating CD8+, γδ-T cells, and B cells, and increased IFN-γ secretion in vitro when compared with responses of naïve animals. No increase in proliferation of CD4+ T cells was detected in infected or naïve cattle. Although CD8+ and γδ-T cell responses may be antigen specific, the memory nature or long-lived response is yet unknown. The lack of responsiveness of CD4+ memory cells to treponemal antigens could explain the high rate of reoccurrence of digital dermatitis in infected animals.


Assuntos
Doenças dos Bovinos/imunologia , Dermatite Digital/imunologia , Ativação Linfocitária , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Bovinos , Interferon gama , Leucócitos Mononucleares , Receptores de Antígenos de Linfócitos T gama-delta/imunologia
7.
J Vis Exp ; (135)2018 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-29863658

RESUMO

Large animals (both livestock and wildlife) serve as important reservoirs of zoonotic pathogens, including Brucella, Mycobacterium bovis, Salmonella, and E. coli, and are useful for the study of pathogenesis and/or spread of the bacteria in natural hosts. With the key function of lymph nodes in the host immune response, lymph node tissues serve as a potential source of RNA for downstream transcriptomic analyses, in order to assess the temporal changes in gene expression in cells over the course of an infection. This article presents an overview of the process of lymph node collection, tissue sampling, and downstream RNA processing in livestock, using cattle (Bos taurus) as a model, with additional examples provided from the American bison (Bison bison). The protocol includes information about the location, identification, and removal of lymph nodes from multiple key sites in the body. Additionally, a biopsy sampling methodology is presented that allows for a consistency of sampling across multiple animals. Several considerations for sample preservation are discussed, including the generation of RNA suitable for downstream methodologies like RNA-sequencing and RT-PCR. Due to the long delays inherent in large animal vs. mouse time course studies, representative results from bison and bovine lymph node tissues are presented to describe the time course of the degradation in this tissue type, in the context of a review of previous methodological work on RNA degradation in other tissues. Overall, this protocol will be useful to both veterinary researchers beginning transcriptome projects on large animal samples and to molecular biologists interested in learning techniques for in vivo tissue sampling and in vitro processing.


Assuntos
Linfonodos/patologia , RNA/metabolismo , Animais , Animais Selvagens , Bison , Bovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA