Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Brain ; 147(5): 1914-1925, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38181433

RESUMO

Autologous bone marrow mononuclear cells (BMMNCs) infused after severe traumatic brain injury have shown promise for treating the injury. We evaluated their impact in children, particularly their hypothesized ability to preserve the blood-brain barrier and diminish neuroinflammation, leading to structural CNS preservation with improved outcomes. We performed a randomized, double-blind, placebo-sham-controlled Bayesian dose-escalation clinical trial at two children's hospitals in Houston, TX and Phoenix, AZ, USA (NCT01851083). Patients 5-17 years of age with severe traumatic brain injury (Glasgow Coma Scale score ≤ 8) were randomized to BMMNC or placebo (3:2). Bone marrow harvest, cell isolation and infusion were completed by 48 h post-injury. A Bayesian continuous reassessment method was used with cohorts of size 3 in the BMMNC group to choose the safest between two doses. Primary end points were quantitative brain volumes using MRI and microstructural integrity of the corpus callosum (diffusivity and oedema measurements) at 6 months and 12 months. Long-term functional outcomes and ventilator days, intracranial pressure monitoring days, intensive care unit days and therapeutic intensity measures were compared between groups. Forty-seven patients were randomized, with 37 completing 1-year follow-up (23 BMMNC, 14 placebo). BMMNC treatment was associated with an almost 3-day (23%) reduction in ventilator days, 1-day (16%) reduction in intracranial pressure monitoring days and 3-day (14%) reduction in intensive care unit (ICU) days. White matter volume at 1 year in the BMMNC group was significantly preserved compared to placebo [decrease of 19 891 versus 40 491, respectively; mean difference of -20 600, 95% confidence interval (CI): -35 868 to -5332; P = 0.01], and the number of corpus callosum streamlines was reduced more in placebo than BMMNC, supporting evidence of preserved corpus callosum connectivity in the treated groups (-431 streamlines placebo versus -37 streamlines BMMNC; mean difference of -394, 95% CI: -803 to 15; P = 0.055), but this did not reach statistical significance due to high variability. We conclude that autologous BMMNC infusion in children within 48 h after severe traumatic brain injury is safe and feasible. Our data show that BMMNC infusion led to: (i) shorter intensive care duration and decreased ICU intensity; (ii) white matter structural preservation; and (iii) enhanced corpus callosum connectivity and improved microstructural metrics.


Assuntos
Transplante de Medula Óssea , Lesões Encefálicas Traumáticas , Transplante Autólogo , Humanos , Criança , Lesões Encefálicas Traumáticas/terapia , Masculino , Feminino , Adolescente , Método Duplo-Cego , Pré-Escolar , Transplante de Medula Óssea/métodos , Transplante Autólogo/métodos , Imageamento por Ressonância Magnética , Resultado do Tratamento , Leucócitos Mononucleares/transplante , Teorema de Bayes
2.
J Surg Res ; 296: 142-148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38277950

RESUMO

INTRODUCTION: Traumatic brain injury (TBI) is a leading cause of death and morbidity in the trauma population. Microglia drive the secondary neuroinflammatory response after TBI. We sought to determine if the microglial response to neurologic injury was exacerbated by a second stimulus after exposure to neurologic injury. METHODS: Sprague-Dawley rats (age 2-3 wk) were divided into injured and noninjured groups. Injured rats underwent a controlled cortical impact injury; noninjured rats remained naïve to any injury and served as the control group. Primary rat microglia were isolated and applied to in vitro cultures. After incubation for 24 h, the microglia were stimulated with lipopolysaccharide (LPS) or norepinephrine. Twenty-four hours after stimulation, cell culture supernatant was collected. Tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) production were measured by standard enzyme-linked immunosorbent assays. GraphPad Prism was used for statistical analysis. RESULTS: When compared to noninjured microglia, LPS induced a significantly greater production of TNF-α in microglia isolated from the injured ipsilateral (versus noninjured = 938.8 ± 155.1, P < 0.0001) and injured contralateral hemispheres (versus noninjured = 426.6 ± 155.1, P < 0.0001). When compared to microglia from noninjured cerebral tissue, IL-6 production was significantly greater after LPS stimulation in the injured ipsilateral hemisphere (mean difference versus noninjured = 9540 ± 3016, P = 0.0101) and the contralateral hemisphere (16,700 ± 3016, P < 0.0001). Norepinephrine did not have a significant effect on IL-6 or TNF-α production. CONCLUSIONS: LPS stimulation may amplify the release of proinflammatory cytokines from postinjury microglia. These data suggest that post-TBI complications, like sepsis, may propagate neuroinflammation by augmenting the proinflammatory response of microglia.


Assuntos
Lesões Encefálicas Traumáticas , Citocinas , Ratos , Animais , Microglia/patologia , Lipopolissacarídeos/farmacologia , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/farmacologia , Interleucina-6 , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Norepinefrina
3.
Neurocrit Care ; 38(3): 688-697, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36418766

RESUMO

BACKGROUND: Microglia are a primary mediator of the neuroinflammatory response to neurologic injury, such as that in traumatic brain injury. Their response includes changes to their cytokine expression, metabolic profile, and immunophenotype. Dexmedetomidine (DEX) is an α2 adrenergic agonist used as a sedative in critically ill patients, such as those with traumatic brain injury. Given its pharmacologic properties, DEX may alter the phenotype of inflammatory microglia. METHODS: Primary microglia were isolated from Sprague-Dawley rats and cultured. Microglia were activated using multiple mediators: lipopolysaccharide (LPS), polyinosinic-polycytidylic acid (Poly I:C), and traumatic brain injury damage-associated molecular patterns (DAMP) from a rat that sustained a prior controlled cortical impact injury. After activation, cultures were treated with DEX. At the 24-h interval, the cell supernatant and cells were collected for the following studies: cytokine expression (tumor necrosis factor-α [TNFα], interleukin-10 [IL-10]) via enzyme-linked immunosorbent assay, 6-phosphofructokinase enzyme activity assay, and immunophenotype profiling with flow cytometry. Cytokine expression and metabolic enzyme activity data were analyzed using two-way analysis of variance. Cell surface marker expression was analyzed using FlowJo software. RESULTS: In LPS-treated cultures, DEX treatment decreased the expression of TNFα from microglia (mean difference = 121.5 ± 15.96 pg/mL; p < 0.0001). Overall, DEX-treated cultures had a lower expression of IL-10 than nontreated cultures (mean difference = 39.33 ± 14.50 pg/mL, p < 0.0001). DEX decreased IL-10 expression in LPS-stimulated microglia (mean difference = 74.93 ± 12.50 pg/mL, p = 0.0039) and Poly I:C-stimulated microglia (mean difference = 23.27 ± 6.405 pg/mL, p = 0.0221). In DAMP-stimulated microglia, DEX decreased the activity of 6-phosphofructokinase (mean difference = 18.79 ± 6.508 units/mL; p = 0.0421). The microglial immunophenotype was altered to varying degrees with different inflammatory stimuli and DEX treatment. CONCLUSIONS: DEX may alter the neuroinflammatory response of microglia. By altering the microglial profile, DEX may affect the progression of neurologic injury.


Assuntos
Lesões Encefálicas Traumáticas , Dexmedetomidina , Ratos , Animais , Dexmedetomidina/farmacologia , Dexmedetomidina/metabolismo , Dexmedetomidina/uso terapêutico , Interleucina-10/metabolismo , Interleucina-10/uso terapêutico , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ratos Sprague-Dawley , Lipopolissacarídeos/farmacologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Citocinas/metabolismo , Inflamação/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Poli I/metabolismo , Poli I/uso terapêutico
4.
Mol Cancer Ther ; 21(9): 1449-1461, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35793453

RESUMO

Valine-citrulline is a protease-cleavable linker commonly used in many drug delivery systems, including antibody-drug conjugates (ADC) for cancer therapy. However, its suboptimal in vivo stability can cause various adverse effects such as neutropenia and hepatotoxicity, leading to dose delays or treatment discontinuation. Here, we report that glutamic acid-glycine-citrulline (EGCit) linkers have the potential to solve this clinical issue without compromising the ability of traceless drug release and ADC therapeutic efficacy. We demonstrate that our EGCit ADC resists neutrophil protease-mediated degradation and spares differentiating human neutrophils. Notably, our anti-HER2 ADC shows almost no sign of blood and liver toxicity in healthy mice at 80 mg kg-1. In contrast, at the same dose level, the FDA-approved anti-HER2 ADCs Kadcyla and Enhertu show increased levels of serum alanine aminotransferase and aspartate aminotransferase and morphologic changes in liver tissues. Our EGCit conjugates also exert greater antitumor efficacy in multiple xenograft tumor models compared with Kadcyla and Enhertu. This linker technology could substantially broaden the therapeutic windows of ADCs and other drug delivery agents, providing clinical options with improved efficacy and safety.


Assuntos
Antineoplásicos , Imunoconjugados , Ado-Trastuzumab Emtansina , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Citrulina , Humanos , Imunoconjugados/metabolismo , Imunoconjugados/farmacologia , Camundongos , Peptídeo Hidrolases , Índice Terapêutico
5.
Front Immunol ; 13: 874698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874742

RESUMO

Mesenchymal stromal cells (MSC) undergo functional maturation upon their migration from bone marrow and introduction to a site of injury. This inflammatory licensing leads to heightened immune regulation via cell-to-cell interaction and the secretion of immunomodulatory molecules, such as anti-inflammatory mediators and antioxidants. Pro-inflammatory cytokines are a recognized catalyst of inflammatory licensing; however, biomechanical forces, such as fluid shear stress, are a second, distinct class of stimuli that incite functional maturation. Here we show mechanotransduction, achieved by exposing MSC to various grades of wall shear stress (WSS) within a scalable conditioning platform, enhances the immunomodulatory potential of MSC independent of classical pro-inflammatory cytokines. A dose-dependent effect of WSS on potency is evidenced by production of prostaglandin E2 (PGE2) and indoleamine 2,3 dioxygenase 1 (IDO1), as well as suppression of tumor necrosis factor-α (TNF- α) and interferon-γ (IFN-γ) production by activated immune cells. Consistent, reproducible licensing is demonstrated in adipose tissue and bone marrow human derived MSC without significant impact on cell viability, cellular yield, or identity. Transcriptome analysis of WSS-conditioned BM-MSC elucidates the broader phenotypic implications on the differential expression of immunomodulatory factors. These results suggest mechanotransduction as a viable, scalable pre-conditioning alternative to pro-inflammatory cytokines. Enhancing the immunomodulatory capacity of MSC via biomechanical conditioning represents a novel cell therapy manufacturing approach.


Assuntos
Mecanotransdução Celular , Células-Tronco Mesenquimais , Citocinas/metabolismo , Dinoprostona/metabolismo , Humanos , Imunomodulação , Células-Tronco Mesenquimais/metabolismo
6.
Stem Cells Transl Med ; 11(1): 2-13, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35641163

RESUMO

The number of mesenchymal stromal/stem cell (MSC) therapeutics and types of clinical applications have greatly diversified during the past decade, including rapid growth of poorly regulated "Stem Cell Clinics" offering diverse "Unproven Stem Cell Interventions." This product diversification necessitates a critical evaluation of the reliance on the 2006 MSC minimal criteria to not only define MSC identity but characterize MSC suitability for intravascular administration. While high-quality MSC therapeutics have been safely administered intravascularly in well-controlled clinical trials, repeated case reports of mild-to-more-severe adverse events have been reported. These are most commonly related to thromboembolic complications upon infusion of highly procoagulant tissue factor (TF/CD142)-expressing MSC products. As TF/CD142 expression varies widely depending on the source and manufacturing process of the MSC product, additional clinical cell product characterization and guidelines are needed to ensure the safe use of MSC products. To minimize risk to patients receiving MSC therapy, we here propose to supplement the minimal criteria used for characterization of MSCs, to include criteria that assess the suitability of MSC products for intravascular use. If cell products are intended for intravascular delivery, which is true for half of all clinical applications involving MSCs, the effects of MSC on coagulation and hemocompatibility should be assessed and expression of TF/CD142 should be included as a phenotypic safety marker. This adjunct criterion will ensure both the identity of the MSCs as well as the safety of the MSCs has been vetted prior to intravascular delivery of MSC products.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Coagulação Sanguínea , Humanos , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , Tromboplastina/metabolismo
7.
JTO Clin Res Rep ; 2(9): 100216, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34590055

RESUMO

INTRODUCTION: Resection and reconstruction of the esophagus remains fraught with morbidity and mortality. Recently, data from a porcine reconstruction model revealed that segmental esophageal reconstruction using an autologous mesenchymal stromal cell-seeded polyurethane graft (Cellspan esophageal implant [CEI]) can facilitate esophageal regrowth and regeneration. To this end, a patient requiring a full circumferential esophageal segmental reconstruction after a complex multiorgan tumor resection was approved for an investigational treatment under the Food and Drug Administration Expanded Access Use (Investigational New Drug 17402). METHODS: Autologous adipose-derived mesenchymal stromal cells (Ad-MSCs) were isolated from the Emergency Investigational New Drug patient approximately 4 weeks before surgery from an adipose tissue biopsy specimen. The Ad-MSCs were grown and expanded under current Good Manufacturing Practice manufacturing conditions. The cells were then seeded onto a polyurethane fiber mesh scaffold (Cellspan scaffold) and cultured in a custom bioreactor to manufacture the final CEI graft. The cell-seeded scaffold was then shipped to the surgical site for surgical implantation. After removal of a tumor mass and a full circumferential 4 cm segment of the esophagus that was invaded by the tumor, the CEI was implanted by suturing the tubular CEI graft to both ends of the remaining native esophagus using end-to-end anastomosis. RESULTS: In this case report, we found that a clinical-grade, tissue-engineered esophageal graft can be used for segmental esophageal reconstruction in a human patient. This report reveals that the graft supports regeneration of the esophageal conduit. Histologic analysis of the tissue postmortem, 7.5 months after the implantation procedure, revealed complete luminal epithelialization and partial esophageal tissue regeneration. CONCLUSIONS: Autologous Ad-MSC seeded onto a tubular CEI tissue-engineered graft stimulates tissue regeneration following implantation after a full circumferential esophageal resection.

8.
PLoS One ; 16(5): e0251601, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34038436

RESUMO

Traumatic brain injury (TBI) causes both physical disruption of the blood brain barrier (BBB) and altered immune responses that can lead to significant secondary brain injury and chronic inflammation within the central nervous system (CNS). Cell therapies, including mesenchymal stromal cells (MSC), have been shown to restore BBB integrity and augment endogenous splenic regulatory T cells (Treg), a subset of CD4+ T cells that function to regulate immune responses and prevent autoimmunity. We have recently shown that infusion of human cord blood-derived Treg decreased neuroinflammation after TBI in vivo and in vitro. However, while both cells have demonstrated anti-inflammatory and regenerative potential, they likely utilize differing, although potentially overlapping, mechanisms. Furthermore, studies investigating these two cell types together, as a combination therapy, are lacking. In this study, we compared the ability of Treg+MSC combination therapy, as well as MSC and Treg monotherapies, to improve BBB permeability in vivo and suppress inflammation in vitro. While Treg+MSC combination did not significantly augment potency in vivo, our in vitro data demonstrates that combination therapy may augment therapeutic potency and immunosuppressive potential compared to Treg or MSC monotherapy.


Assuntos
Barreira Hematoencefálica/imunologia , Lesões Encefálicas Traumáticas , Tolerância Imunológica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Linfócitos T Reguladores , Animais , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/terapia , Modelos Animais de Doenças , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante
9.
Expert Opin Ther Targets ; 25(5): 365-380, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34029505

RESUMO

INTRODUCTION: Microglia is the resident tissue macrophages of the central nervous system. Prolonged microglial activation often occurs after traumatic brain injury and is associated with deteriorating neurocognitive outcomes. Resolution of microglial activation is associated with limited tissue loss and improved neurocognitive outcomes. Limiting the prolonged pro-inflammatory response and the associated secondary tissue injury provides the rationale and scientific premise for considering microglia as a therapeutic target. AREAS COVERED: In this review, we discuss markers of microglial activation, such as immunophenotype and microglial response to injury, including cytokine/chemokine release, free radical formation, morphology, phagocytosis, and metabolic shifts. We compare the origin and role in neuroinflammation of microglia and monocytes/macrophages. We review potential therapeutic targets to shift microglial polarization. Finally, we review the effect of cell therapy on microglia. EXPERT OPINION: Dysregulated microglial activation after neurologic injury, such as traumatic brain injury, can worsen tissue damage and functional outcomes. There are potential targets in microglia to attenuate this activation, such as proteins and molecules that regulate microglia polarization. Cellular therapeutics that limit, but do not eliminate, the inflammatory response have improved outcomes in animal models by reducing pro-inflammatory microglial activation via secondary signaling. These findings have been replicated in early phase clinical trials.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Microglia/metabolismo , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Humanos , Inflamação/patologia , Inflamação/terapia , Macrófagos/metabolismo , Terapia de Alvo Molecular , Transdução de Sinais/fisiologia
10.
Stem Cells ; 39(3): 358-370, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33368792

RESUMO

The inflammatory response after traumatic brain injury (TBI) can lead to significant secondary brain injury and chronic inflammation within the central nervous system. Cell therapies, including mesenchymal stromal cells (MSC), have led to improvements in animal models of TBI and are under investigation in human trials. One potential mechanism for the therapeutic potential of MSC is their ability to augment the endogenous response of immune suppressive regulatory T cells (Treg). We have recently shown that infusion of human cord blood Treg decreased chronic microgliosis after TBI and altered the systemic immune response in a rodent model. These cells likely use both overlapping and distinct mechanisms to modulate the immune system; therefore, combining Treg and MSC as a combination therapy may confer therapeutic benefit over either monotherapy. However, investigation of Treg + MSC combination therapy in TBI is lacking. In this study, we compared the ability MSC + Treg combination therapy, as well as MSC and Treg monotherapies, to inhibit the neuroinflammatory response to TBI in vivo and in vitro. Treg + MSC combination therapy demonstrated increased potency to reduce the neuro- and peripheral inflammatory response compared to monotherapy; furthermore, the timing of infusion proved to be a significant variable in the efficacy of both MSC monotherapy and Treg + MSC combination therapy in vivo and in vitro.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Lesões Encefálicas Traumáticas/imunologia , Terapia Combinada/métodos , Modelos Animais de Doenças , Imunidade , Inflamação/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Ratos Sprague-Dawley
11.
Stem Cells Dev ; 29(15): 967-980, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32475301

RESUMO

Congenital diaphragmatic hernia (CDH) leads to pathophysiologic pulmonary vasoreactivity. Previous studies show that mesenchymal stromal cell-derived extracellular vesicles (MSCEv) inhibit lung inflammation and vascular remodeling. We characterize MSCEv and human pulmonary artery endothelial cell (HPAEC) interaction, as well as the pulmonary artery (PA) response to MSCEv treatment. HPAECs were cultured with and without exposure to nitrofen (2,4-dichloro-phenyl-p-nitrophenylether) and treated with MSCEv. HPAEC viability, architecture, production of reactive oxygen species (ROS), endothelial dysfunction-associated protein levels (PPARγ, LOX-1, LOX-2, nuclear factor-κB [NF-κB], endothelial NO synthase [eNOS], ET-1 [endothelin 1]), and the nature of MSCEv-cellular interaction were assessed. Newborn rodents with and without CDH (nitrofen model and Sprague-Dawley) were treated with intravascular MSCEv or vehicle control, and their PAs were isolated. Contractility was assessed by wire myography. The contractile (KCL and ET-1) and relaxation (fasudil) responses were evaluated. HPAEC viability correlated inversely with nitrofen dose, while architectural compromise was directly proportional. There was a 2.1 × increase in ROS levels in nitrofen HPAECs (P < 0.001), and MSCEv treatment attenuated ROS levels by 1.5 × versus nitrofen HPAECs (P < 0.01). Nitrofen-induced alterations in endothelial dysfunction-associated proteins are shown, and exposure to MSCEv restored more physiologic expression. Nitrofen HPAEC displayed greater MSCEv uptake (80% increase, P < 0.05). Adenosine, a clathrin-mediated endocytosis inhibitor, decreased uptake by 46% (P < 0.05). CDH PA contraction was impaired with KCL (108.6% ± 1.4% vs. 112.0% ± 1.4%, P = 0.092) and ET-1 (121.7% ± 3.0% vs. 131.2% ± 1.8%, P < 0.01). CDH PA relaxation was impaired with fasudil (32.2% ± 1.9% vs. 42.1% ± 2.2%, P < 0.001). After MSCEv treatment, CDH PA contraction improved (125.9% ± 3.4% vs. 116.4 ± 3.5, P = 0.06), and relaxation was unchanged (32.5% ± 3.2% vs. 29.4% ± 3.1%, P = 0.496). HPAEC exposure to nitrofen led to changes consistent with vasculopathy in CDH, and MSCEv treatment led to a more physiologic cellular response. MSCEv were preferentially taken up by nitrofen-treated cells by clathrin-dependent endocytosis. In vivo, MSCEv exposure improved PA contractile response. These data reveal mechanisms of cellular and signaling alterations that characterize MSCEv-mediated attenuation of pulmonary vascular dysfunction in CDH-associated pulmonary hypertension.


Assuntos
Endotélio/fisiopatologia , Vesículas Extracelulares/metabolismo , Hérnias Diafragmáticas Congênitas/fisiopatologia , Artéria Pulmonar/fisiopatologia , Adulto , Animais , Morte Celular , Clatrina/metabolismo , Endocitose , Células Endoteliais/metabolismo , Endotelina-1/metabolismo , Endotélio/patologia , Feminino , Corantes Fluorescentes/metabolismo , Hérnias Diafragmáticas Congênitas/patologia , Humanos , NF-kappa B/metabolismo , Éteres Fenílicos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores Depuradores Classe E/metabolismo , Vasoconstrição
12.
Pediatr Pulmonol ; 55(9): 2402-2411, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32568428

RESUMO

OBJECTIVE: Abnormal pulmonary vasculature directly affects the development and progression of congenital diaphragmatic hernia (CDH)-associated pulmonary hypertension (PH). Though overarching structural and cellular changes in CDH-affected pulmonary arteries have been documented, the precise role of the extracellular matrix (ECM) in the pulmonary artery (PA) pathophysiology remains undefined. Here, we quantify the structural, compositional, and mechanical CDH-induced changes in the main and distal PA ECM and investigate the efficacy of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) as a therapy to ameliorate pathological vascular ECM changes. METHODS: Pregnant Sprague-Dawley rodents were administered nitrofen to induce CDH-affected pulmonary vasculature in the offspring. A portion of CDH-affected pups was treated with intravenous infusion of MSC-EVs (1 × 1010 /mL) upon birth. A suite of histological, mechanical, and transmission electron microscopic analyses were utilized to characterize the PA ECM. RESULTS: The CDH model main PA presented significantly altered characteristics-including greater vessel thickness, greater lysyl oxidase (LOX) expression, and a relatively lower ultimate tensile strength of 13.6 MPa compared to control tissue (25.1 MPa), suggesting that CDH incurs ECM structural disorganization. MSC-EV treatment demonstrated the potential to reverse CDH-related changes, particularly through rapid inhibition of ECM remodeling enzymes (LOX and MMP-9). Additionally, MSC-EV treatment bolstered structural aspects of the PA ECM and mitigated pathological disorganization as exhibited by increased medial wall thickness and stiffness that, while not significantly altered, trends away from CDH-affected tissue. CONCLUSIONS: These data demonstrate notable ECM remodeling in the CDH pulmonary vasculature, along with the capacity of MSC-EVs to attenuate pathological ECM remodeling, identifying MSC-EVs as a potentially efficacious therapeutic for CDH-associated pulmonary hypertension.


Assuntos
Matriz Extracelular/patologia , Vesículas Extracelulares , Hérnias Diafragmáticas Congênitas/patologia , Artéria Pulmonar/patologia , Animais , Feminino , Hérnias Diafragmáticas Congênitas/induzido quimicamente , Hérnias Diafragmáticas Congênitas/complicações , Hérnias Diafragmáticas Congênitas/fisiopatologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Pulmão/patologia , Troca Materno-Fetal , Células-Tronco Mesenquimais , Éteres Fenílicos , Gravidez , Artéria Pulmonar/fisiopatologia , Ratos Sprague-Dawley
13.
PLoS One ; 15(5): e0233263, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32453741

RESUMO

In the U.S., approximately 1.7 million people suffer traumatic brain injury each year, with many enduring long-term consequences and significant medical and rehabilitation costs. The primary injury causes physical damage to neurons, glia, fiber tracts and microvasculature, which is then followed by secondary injury, consisting of pathophysiological mechanisms including an immune response, inflammation, edema, excitotoxicity, oxidative damage, and cell death. Most attempts at intervention focus on protection, repair or regeneration, with regenerative medicine becoming an intensively studied area over the past decade. The use of stem cells has been studied in many disease and injury models, using stem cells from a variety of sources and applications. In this study, human adipose-derived mesenchymal stromal cells (MSCs) were administered at early (3 days) and delayed (14 days) time points after controlled cortical impact (CCI) injury in rats. Animals were routinely assessed for neurological and vestibulomotor deficits, and at 32 days post-injury, brain tissue was processed by flow cytometry and immunohistochemistry to analyze neuroinflammation. Treatment with HB-adMSC at either 3d or 14d after injury resulted in significant improvements in neurocognitive outcome and a change in neuroinflammation one month after injury.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Transplante de Células-Tronco Mesenquimais , Tecido Adiposo/citologia , Animais , Encéfalo/patologia , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/psicologia , Modelos Animais de Doenças , Humanos , Inflamação/patologia , Masculino , Aprendizagem em Labirinto , Células-Tronco Mesenquimais/citologia , Destreza Motora , Neurogênese , Ratos Sprague-Dawley , Fatores de Tempo
14.
Stem Cells Transl Med ; 9(4): 491-498, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31903737

RESUMO

Clinical trials in trauma populations are exploring the use of clinical cellular therapeutics (CCTs) like human mesenchymal stromal cells (MSC) and mononuclear cells (MNC). Recent studies demonstrate a procoagulant effect of these CCTs related to their expression of tissue factor (TF). We sought to examine this relationship in blood from severely injured trauma patients and identify methods to reverse this procoagulant effect. Human MSCs from bone marrow, adipose, and amniotic tissues and freshly isolated bone marrow MNC samples were tested. TF expression and phenotype were quantified using flow cytometry. CCTs were mixed individually with trauma patients' whole blood, assayed with thromboelastography (TEG), and compared with healthy subjects mixed with the same cell sources. Heparin was added to samples at increasing concentrations until TEG parameters normalized. Clotting time or R time in TEG decreased relative to the TF expression of the CCT treatment in a logarithmic fashion for trauma patients and healthy subjects. Nonlinear regression curves were significantly different with healthy subjects demonstrating greater relative decreases in TEG clotting time. In vitro coadministration of heparin normalized the procoagulant effect and required dose escalation based on TF expression. TF expression in human MSC and MNC has a procoagulant effect in blood from trauma patients and healthy subjects. The procoagulant effect is lower in trauma patients possibly because their clotting time is already accelerated. The procoagulant effect due to MSC/MNC TF expression could be useful in the bleeding trauma patient; however, it may emerge as a safety release criterion due to thrombotic risk. The TF procoagulant effect is reversible with heparin.


Assuntos
Coagulação Sanguínea , Ferimentos e Lesões/sangue , Adulto , Biomarcadores/metabolismo , Coagulação Sanguínea/efeitos dos fármacos , Estudos de Casos e Controles , Feminino , Heparina/farmacologia , Humanos , Masculino , Tromboelastografia
15.
Tissue Eng Part A ; 26(11-12): 591-601, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31739755

RESUMO

Secondary alveolar bone grafts (ABGs) are the standard treatment for the alveolar defect in patients with cleft lip and palate (CLP), but remain invasive and have several disadvantages such as delayed timing of alveolar repair, donor-site complications, graft resorption, and need for multiple surgeries. Earlier management of the alveolar defect (primary ABG) would be ideal, but is limited by the minimal bony donor sites available in the infant. In this study we used a critical-size alveolar bone defect model in the rat to investigate the use of Wharton's Jelly (WJ), the stem cell-rich connective tissue matrix of the umbilical cord, to generate bone within the alveolar cleft. Human WJ was isolated and implanted into a critical-size alveolar bone defect model representative of secondary cleft ABG surgery in 10-11-week-old male Sprague-Dawley rats. The defects were monitored with CT imaging of living animals to evaluate bone regrowth and healing over 24 weeks, followed by histomorphometric evaluation at 24 weeks, after the last CT scan. CT data confirmed that the defect size was critical and did not lead to the union of the bones in the control animals (n = 12) for the entire duration of the study. New bone growth was stimulated leading to partial-to-full closure of the defect in the animals treated with WJ (n = 12). Twenty four weeks postoperatively, the percent increase in new bone formation in the WJ-treated group (156.58% ± 20.67%) was markedly higher than that in the control group (50.36% ± 21.07%) (p < 0.05). Histomorphometric data also revealed significantly greater new bone formation in WJ-treated versus control animals, confirming CT findings. qPCR analysis of human Alu elements was unable to detect any appreciable long-term persistence of human cells in the new bone, indicating that WJ may enhance bone growth by mediating osteoinduction in the host tissue, rather than through osteogenic differentiation of WJ-embedded cells. Impact statement In this study, Wharton's Jelly enhanced bone growth in a preclinical alveolar defect model, indicating its potential use as a natural adjunct in the repair of the alveolar cleft defect in patients with cleft lip and palate (CLP). The clinical success of this approach would represent a paradigm shift in the treatment of patients with CLP by reducing or eliminating the need for subsequent secondary alveolar bone graft and reducing their number of lifetime surgeries.


Assuntos
Fissura Palatina/cirurgia , Geleia de Wharton , Animais , Regeneração Óssea/fisiologia , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Humanos , Osteogênese/fisiologia , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X
16.
Front Immunol ; 10: 1645, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417542

RESUMO

For several decades, multipotent mesenchymal stromal cells (MSCs) have been extensively studied for their therapeutic potential across a wide range of diseases. In the preclinical setting, MSCs demonstrate consistent ability to promote tissue healing, down-regulate excessive inflammation and improve outcomes in animal models. Several proposed mechanisms of action have been posited and demonstrated across an array of in vitro models. However, translation into clinical practice has proven considerably more difficult. A number of prominent well-funded late-phase clinical trials have failed, thus calling out for new efforts to optimize product delivery in the clinical setting. In this review, we discuss novel topics critical to the successful translation of MSCs from pre-clinical to clinical applications. In particular, we focus on the major routes of cell delivery, aspects related to hemocompatibility, and potential safety concerns associated with MSC therapy in the different settings.


Assuntos
Diferenciação Celular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Animais , Modelos Animais de Doenças , Humanos
17.
Brain Res ; 1720: 146298, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31220426

RESUMO

BACKGROUND AND OBJECTIVE: Most stroke patients are prescribed aspirin (ASA) to adjust blood coagulability. Marrow stromal cells (MSCs) are being tested in clinical trials for stroke patients who likely are prescribed aspirin. One of the principal mechanisms of action of MSCs and ASA is modulation of the inflammatory response, including those mediated by monocytes (Mo). Thus, here we tested if aspirin can modify anti-inflammatory properties of MSCs or Mo alone, and in combination. METHODS: Mo were isolated at 24 h of stroke onset from ischemic stroke patients with NIHSS ranging from 11 to 20 or from healthy controls. Human bone marrow-derived MSCs from healthy subjects were used at passage 3. Mo, MSCs, and MSCs-Mo co-cultures were exposed to ASA at clinically relevant doses. The secretome profile of inflammatory mediators was measured using Magpix multiplex cytokine array. Viability was measured using MTT assay. Linear mixed effect model was used for statistical analysis. RESULTS: Overall Mo from control subjects exposed to ASA showed increased secretion of IL-1RA, IL-8, MCP-1, and TNF-α and Mo from stroke patients showed greater release of IL-1RA and MCP-1. In MSCs-Mo co-cultures, ASA added to co-cultures of control Mo reduced fractalkine secretion while it increased the fractalkine secretion when added to Mo from stroke patients. In addition, in co-cultures independent of Mo origin, ASA reduced IL-6, IL-8, MCP-1, and TNF-α. CONCLUSIONS: Aspirin in acute stroke patients may modulate the secretome profile of Mo and MSCs, thus potentially modulating immune and inflammatory responses associated with stroke. Our results suggest that stroke trials involving the use of intravenous MSCs should consider the effect of aspirin as a confounding factor.


Assuntos
Aspirina/uso terapêutico , Imunomodulação/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Idoso , Aspirina/metabolismo , Medula Óssea , Quimiocina CCL2 , Técnicas de Cocultura , Citocinas , Feminino , Humanos , Proteína Antagonista do Receptor de Interleucina 1 , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Acidente Vascular Cerebral/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Fator de Necrose Tumoral alfa
18.
Regen Med ; 14(4): 295-307, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31074319

RESUMO

Aim: Traumatic brain injury is a complex condition consisting of a mechanical injury with neurovascular disruption and inflammation with limited clinical interventions available. A growing number of studies report systemic delivery of human umbilical cord blood (HUCB) as a therapy for neural injuries. Materials & methods: HUCB cells from five donors were tested to improve blood-brain barrier integrity in a traumatic brain injury rat model at a dose of 2.5 × 107 cells/kg at 24 or 72 h postinjury and for immunomodulatory activity in vitro. Results & Conclusion: We observed that cells delivered 72 h postinjury significantly restored blood-brain barrier integrity. HUCB cells reduced the amount of TNF-α and IFN-γ released by activated primary rat splenocytes, which correlated with the expression of COX2 and IDO1.


Assuntos
Lesões Encefálicas/terapia , Encéfalo/irrigação sanguínea , Sangue Fetal/transplante , Inflamação/terapia , Cordão Umbilical/citologia , Animais , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Extravasamento de Materiais Terapêuticos e Diagnósticos/patologia , Humanos , Imunomodulação , Inflamação/complicações , Inflamação/patologia , Masculino , Ratos Sprague-Dawley , Baço/patologia , Fator de Necrose Tumoral alfa/metabolismo
19.
Genome Biol ; 19(1): 133, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30217220

RESUMO

BACKGROUND: Understanding the embryonic stem cell (ESC) fate decision between self-renewal and proper differentiation is important for developmental biology and regenerative medicine. Attention has focused on mechanisms involving histone modifications, alternative pre-messenger RNA splicing, and cell-cycle progression. However, their intricate interrelations and joint contributions to ESC fate decision remain unclear. RESULTS: We analyze the transcriptomes and epigenomes of human ESC and five types of differentiated cells. We identify thousands of alternatively spliced exons and reveal their development and lineage-dependent characterizations. Several histone modifications show dynamic changes in alternatively spliced exons and three are strongly associated with 52.8% of alternative splicing events upon hESC differentiation. The histone modification-associated alternatively spliced genes predominantly function in G2/M phases and ATM/ATR-mediated DNA damage response pathway for cell differentiation, whereas other alternatively spliced genes are enriched in the G1 phase and pathways for self-renewal. These results imply a potential epigenetic mechanism by which some histone modifications contribute to ESC fate decision through the regulation of alternative splicing in specific pathways and cell-cycle genes. Supported by experimental validations and extended datasets from Roadmap/ENCODE projects, we exemplify this mechanism by a cell-cycle-related transcription factor, PBX1, which regulates the pluripotency regulatory network by binding to NANOG. We suggest that the isoform switch from PBX1a to PBX1b links H3K36me3 to hESC fate determination through the PSIP1/SRSF1 adaptor, which results in the exon skipping of PBX1. CONCLUSION: We reveal the mechanism by which alternative splicing links histone modifications to stem cell fate decision.


Assuntos
Processamento Alternativo , Células-Tronco Embrionárias/metabolismo , Código das Histonas , Diferenciação Celular , Divisão Celular , Células-Tronco Embrionárias/citologia , Éxons , Fase G2 , Humanos , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo
20.
Stem Cells Transl Med ; 7(10): 731-739, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30070065

RESUMO

Clinical cellular therapeutics (CCTs) have shown preliminary efficacy in reducing inflammation after trauma, preserving cardiac function after myocardial infarction, and improving functional recovery after stroke. However, most clinically available cell lines express tissue factor (TF) which stimulates coagulation. We sought to define the degree of procoagulant activity of CCTs as related to TF expression. CCT samples from bone marrow, adipose, amniotic fluid, umbilical cord, multi-potent adult progenitor cell donors, and bone marrow mononuclear cells were tested. TF expression and phenotype were quantified using flow cytometry. Procoagulant activity of the CCTs was measured in vitro with thromboelastography and calibrated thrombogram. Fluorescence-activated cell sorting (FACS) separated samples into high- and low-TF expressing populations to isolate the contribution of TF to coagulation. A TF neutralizing antibody was incubated with samples to demonstrate loss of procoagulant function. All CCTs tested expressed procoagulant activity that correlated with expression of tissue factor. Time to clot and thrombin formation decreased with increasing TF expression. High-TF expressing cells decreased clotting time more than low-TF expressing cells when isolated from a single donor using FACS. A TF neutralizing antibody restored clotting time to control values in some, but not all, CCT samples. CCTs demonstrate wide variability in procoagulant activity related to TF expression. Time to clot and thrombin formation decreases as TF load increases and this procoagulant effect is neutralized by a TF blocking antibody. Clinical trials using CCTs are in progress and TF expression may emerge as a safety release criterion. Stem Cells Translational Medicine 2018;7:731-739.


Assuntos
Coagulação Sanguínea , Terapia Baseada em Transplante de Células e Tecidos/métodos , Tromboplastina/metabolismo , Tecido Adiposo/citologia , Líquido Amniótico/citologia , Células da Medula Óssea/citologia , Sangue Fetal/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Tromboelastografia , Trombina/metabolismo , Tromboplastina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA