RESUMO
Helicobacter pylori disturbs the stomach lining during long-term colonization of its human host, with sequelae including ulcers and gastric cancer1,2. Numerous H. pylori virulence factors have been identified, showing extensive geographic variation1. Here we identify a 'Hardy' ecospecies of H. pylori that shares the ancestry of 'Ubiquitous' H. pylori from the same region in most of the genome but has nearly fixed single-nucleotide polymorphism differences in 100 genes, many of which encode outer membrane proteins and host interaction factors. Most Hardy strains have a second urease, which uses iron as a cofactor rather than nickel3, and two additional copies of the vacuolating cytotoxin VacA. Hardy strains currently have a limited distribution, including in Indigenous populations in Siberia and the Americas and in lineages that have jumped from humans to other mammals. Analysis of polymorphism data implies that Hardy and Ubiquitous coexisted in the stomachs of modern humans since before we left Africa and that both were dispersed around the world by our migrations. Our results also show that highly distinct adaptive strategies can arise and be maintained stably within bacterial populations, even in the presence of continuous genetic exchange between strains.
RESUMO
BACKGROUND: Bariatric surgery is an effective treatment option for obesity and provides long-term weight loss and positive effects on metabolism, but the underlying mechanisms are poorly understood. Alterations in bile acid metabolism have been suggested as a potential contributing factor, but comprehensive studies in humans are lacking. METHODS: In this study, we analysed the postprandial responses of bile acids, C4 and FGF19 in plasma, and excretion of bile acids in faeces, before and after bariatric surgery in patients (n = 38; 74% females) with obesity with or without type 2 diabetes from the BARIA cohort. FINDINGS: We observed that total fasting plasma bile acid levels increased, and faecal excretion of bile acids decreased after surgery suggesting increased reabsorption of bile acids. Consistent with increased bile acid levels after surgery we observed increased postprandial levels of FGF19 and suppression of the bile acid synthesis marker C4, suggesting increased FXR activation in the gut. We also noted that a subset of bile acids had altered postprandial responses before and after surgery. Finally, fasting plasma levels of 6α-hydroxylated bile acids, which are TGR5 agonists and associated with improved glucose metabolism, were increased after surgery and one of them, HDCA, covaried with diabetes remission in an independent cohort. INTERPRETATION: Our findings provide new insights regarding bile acid kinetics and suggest that bariatric surgery in humans alters bile acid profiles leading to activation of FXR and TGR5, which may contribute to weight loss, improvements in glucose metabolism, and diabetes remission. FUNDING: Novo Nordisk Fonden, Leducq Foundation, Swedish Heart-Lung Foundation, Knut and Alice Wallenberg Foundation, the ALF-agreement, ZonMw.
Assuntos
Cirurgia Bariátrica , Ácidos e Sais Biliares , Diabetes Mellitus Tipo 2 , Fatores de Crescimento de Fibroblastos , Obesidade , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/cirurgia , Diabetes Mellitus Tipo 2/sangue , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/sangue , Cirurgia Bariátrica/métodos , Feminino , Masculino , Obesidade/cirurgia , Obesidade/metabolismo , Obesidade/sangue , Pessoa de Meia-Idade , Adulto , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/metabolismo , Período Pós-Prandial , Biomarcadores , Fezes/química , Cinética , JejumRESUMO
Weight loss through bariatric surgery is efficient for treatment or prevention of obesity related diseases such as type 2 diabetes and cardiovascular disease. Long term weight loss response does, however, vary among patients undergoing surgery. Thus, it is difficult to identify predictive markers while most obese individuals have one or more comorbidities. To overcome such challenges, an in-depth multiple omics analyses including fasting peripheral plasma metabolome, fecal metagenome as well as liver, jejunum, and adipose tissue transcriptome were performed for 106 individuals undergoing bariatric surgery. Machine leaning was applied to explore the metabolic differences in individuals and evaluate if metabolism-based patients' stratification is related to their weight loss responses to bariatric surgery. Using Self-Organizing Maps (SOMs) to analyze the plasma metabolome, we identified five distinct metabotypes, which were differentially enriched for KEGG pathways related to immune functions, fatty acid metabolism, protein-signaling, and obesity pathogenesis. The gut metagenome of the most heavily medicated metabotypes, treated simultaneously for multiple cardiometabolic comorbidities, was significantly enriched in Prevotella and Lactobacillus species. This unbiased stratification into SOM-defined metabotypes identified signatures for each metabolic phenotype and we found that the different metabotypes respond differently to bariatric surgery in terms of weight loss after 12 months. An integrative framework that utilizes SOMs and omics integration was developed for stratifying a heterogeneous bariatric surgery cohort. The multiple omics datasets described in this study reveal that the metabotypes are characterized by a concrete metabolic status and different responses in weight loss and adipose tissue reduction over time. Our study thus opens a path to enable patient stratification and hereby allow for improved clinical treatments.
Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/cirurgia , Obesidade/cirurgia , Tecido Adiposo , AlgoritmosRESUMO
Despite milestones in preventive measures and treatment, cardiovascular disease (CVD) remains associated with a high burden of morbidity and mortality. The protracted nature of the development and progression of CVD motivates the identification of early and complementary targets that might explain and alleviate any residual risk in treated patients. The gut microbiota has emerged as a sentinel between our inner milieu and outer environment and relays a modified risk associated with these factors to the host. Accordingly, numerous mechanistic studies in animal models support a causal role of the gut microbiome in CVD via specific microbial or shared microbiota-host metabolites and have identified converging mammalian targets for these signals. Similarly, large-scale cohort studies have repeatedly reported perturbations of the gut microbial community in CVD, supporting the translational potential of targeting this ecological niche, but the move from bench to bedside has not been smooth. In this Review, we provide an overview of the current evidence on the interconnectedness of the gut microbiome and CVD against the noisy backdrop of highly prevalent confounders in advanced CVD, such as increased metabolic burden and polypharmacy. We further aim to conceptualize the molecular mechanisms at the centre of these associations and identify actionable gut microbiome-based targets, while contextualizing the current knowledge within the clinical scenario and emphasizing the limitations of the field that need to be overcome.