Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Protoc ; 1(3): e62, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33661576

RESUMO

Cell therapy is being investigated as a powerful intervention to ameliorate the consequences of coronary artery disease. Among the different stem cell options, mesenchymal stem cells (MSCs) are particularly attractive due to their high availability, as well as immune-privileged status. However, it is still unclear whether mesenchymal stem cells can acquire cardiomyogenic characteristics after they are transplanted to the myocardium. In this article, we outline protocols that illustrate the plasticity of MSCs and their ability to acquire cardiogenic characteristics when they are in an ischemic-like environment, as typically encountered after transplantation into the ischemic heart. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Isolation of mesenchymal stem cells (MSCs) Support Protocol 1: Characterization of MSCs by flow cytometry Basic Protocol 2: Isolation of neonatal cardiomyoctes (NCMs) Support Protocol 2: Characterization of NCMs Basic Protocol 3: Cardiogenic plasticity of MSCs under ischemic-like conditions Support Protocol 3: Characterization of the cardiomyogenic potential of MSCs.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Infarto do Miocárdio , Humanos , Miocárdio , Miócitos Cardíacos
2.
Cardiovasc Eng Technol ; 11(3): 328-336, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32002814

RESUMO

PURPOSE: Metabolic alterations underlie many pathophysiological conditions, and their understanding is critical for the development of novel therapies. Although the assessment of metabolic changes in vivo has been historically challenging, recent developments in molecular imaging have allowed us to study novel metabolic research concepts directly in the living subject, bringing us closer to patients. However, in many instances, there is need for sensors that are in close proximity to the organ under investigation, for example to study vascular metabolism. METHODS: In this study, we developed and validated a metabolic detection platform directly in the living subject under an inflammatory condition. The signal collected by a scintillating fiber is amplified using a photomultiplier tube and decodified by an in-house tunable analysis platform. For in vivo testing, we based our experiments on the metabolic characteristics of macrophages, cells closely linked to inflammation and avid for glucose and its analog 18F-fluorodeoxyglucose (18F-FDG). The sensor was validated in New Zealand rabbits, in which inflammation was induced by either a) high cholesterol (HC) diet for 16 weeks or b) vascular balloon endothelial denudation followed by HC diet. RESULTS: There was no difference in weight, hemodynamics, blood pressure, or heart rate between the groups. Vascular inflammation was detected by the metabolic sensor (Inflammation: 0.60 ± 0.03 AU vs. control: 0.48 ± 0.03 AU, p = 0.01), even though no significant inflammation/atherosclerosis was detected by intravascular ultrasound, underscoring the high sensitivity of the system. These findings were confirmed by the presence of macrophages on ex vivo aortic tissue staining. CONCLUSION: In this study, we validated a tunable very sensitive metabolic sensor platform that can be used for the detection of vascular metabolism, such as inflammation. This sensor can be used not only for the detection of macrophage activity but, with alternative probes, it could allow the detection of other pathophysiological processes.


Assuntos
Aorta/metabolismo , Aortite/metabolismo , Aterosclerose/metabolismo , Técnicas Biossensoriais , Metabolismo Energético , Fluordesoxiglucose F18/metabolismo , Fibras Ópticas , Compostos Radiofarmacêuticos/metabolismo , Lesões do Sistema Vascular/metabolismo , Animais , Aorta/lesões , Aorta/patologia , Aortite/patologia , Aterosclerose/patologia , Modelos Animais de Doenças , Macrófagos/metabolismo , Macrófagos/patologia , Coelhos , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Lesões do Sistema Vascular/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA