Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(6): 104444, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35733848

RESUMO

Skeletal muscle stem cells, or satellite cells (SCs), are essential to regenerate and maintain muscle. Quiescent SCs reside in an asymmetric niche between the basal lamina and myofiber membrane. To repair muscle, SCs activate, proliferate, and differentiate, fusing to repair myofibers or reacquiring quiescence to replenish the SC niche. Little is known about when SCs reacquire quiescence during regeneration or the cellular processes that direct SC fate decisions. We find that most SCs reacquire quiescence 5-10 days after muscle injury, following differentiation and fusion of most cells to regenerate myofibers. Single-cell sequencing of myogenic cells in regenerating muscle identifies SCs reacquiring quiescence and reveals that noncell autonomous signaling networks influence SC fate decisions during regeneration. SC transplantation experiments confirm that the regenerating environment influences SC fate. We define a window for SC repopulation of the niche, emphasizing the temporal contribution of the regenerative muscle environment on SC fate.

2.
Cell Stem Cell ; 23(1): 1-2, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29979984

RESUMO

In this issue of Cell Stem Cell, Chan et al. (2018) report that in vivo differentiation of pluripotent stem cells in induced teratomas produces functional embryonic-like muscle stem cells. These purified muscle stem cells engraft with high efficiency and regenerate serially injured muscle.


Assuntos
Células-Tronco Pluripotentes , Teratoma , Diferenciação Celular , Humanos , Fibras Musculares Esqueléticas , Mioblastos
3.
PLoS One ; 13(1): e0190963, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29304082

RESUMO

Excessive circulating triglycerides due to reduction or loss of lipoprotein lipase activity contribute to hypertriglyceridemia and increased risk for pancreatitis. The only gene therapy treatment for lipoprotein lipase deficiency decreases pancreatitis but minimally reduces hypertriglyceridemia. Synthesized in multiple tissues including striated muscle and adipose tissue, lipoprotein lipase is trafficked to blood vessel endothelial cells where it is anchored at the plasma membrane and hydrolyzes triglycerides into free fatty acids. We conditionally knocked out lipoprotein lipase in differentiated striated muscle tissue lowering striated muscle lipoprotein lipase activity causing hypertriglyceridemia. We then crossed lipoprotein lipase striated muscle knockout mice with mice possessing a conditional avian retroviral receptor gene and injected mice with either a human lipoprotein lipase retrovirus or an mCherry control retrovirus. Post-heparin plasma lipoprotein lipase activity increased for three weeks following human lipoprotein lipase retroviral infection compared to mCherry infected mice. Human lipoprotein lipase infected mice had significantly lower blood triglycerides compared to mCherry controls and were comparable to wild-type blood triglyceride levels. Thus, targeted delivery of human lipoprotein lipase into striated muscle tissue identifies a potential therapeutic target for lipoprotein lipase deficiency.


Assuntos
Terapia Genética , Lipase Lipoproteica/genética , Músculo Estriado/patologia , Animais , Vetores Genéticos , Humanos , Hipertrigliceridemia/etiologia , Camundongos , Camundongos Knockout , Músculo Estriado/enzimologia , Retroviridae/genética
4.
Methods Mol Biol ; 1556: 237-244, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28247353

RESUMO

Transplanting adult stem cells provides a stringent test for self-renewal and the assessment of comparative engraftment in competitive transplant assays. Transplantation of satellite cells into mammalian skeletal muscle provided the first critical evidence that satellite cells function as adult muscle stem cells. Transplantation of a single satellite cell confirmed and extended this hypothesis, providing proof that the satellite cell is a bona fide adult skeletal muscle stem cell as reported by Sacco et al. (Nature 456(7221):502-506). Satellite cell transplantation has been further leveraged to identify culture conditions that maintain engraftment and to identify self-renewal deficits in satellite cells from aged mice. Conversion of iPSCs (induced pluripotent stem cells) to a satellite cell-like state, followed by transplantation, demonstrated that these cells possess adult muscle stem cell properties as reported by Darabi et al. (Stem Cell Rev Rep 7(4):948-957) and Mizuno et al. (FASEB J 24(7):2245-2253). Thus, transplantation strategies involving either satellite cells derived from adult muscles or derived from iPSCs may eventually be exploited as a therapy for treating patients with diseased or failing skeletal muscle. Here, we describe methods for isolating dispersed adult mouse satellite cells and satellite cells on intact myofibers for transplantation into recipient mice to study muscle stem cell function and behavior following engraftment .


Assuntos
Músculo Esquelético/citologia , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Biomarcadores , Separação Celular/métodos , Citometria de Fluxo/métodos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/transplante , Regeneração , Células Satélites de Músculo Esquelético/citologia , Transplante de Células-Tronco/métodos , Células-Tronco/metabolismo
5.
Methods Mol Biol ; 1460: 141-62, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27492171

RESUMO

Adult skeletal muscle stem cells, termed satellite cells, regenerate and repair the functional contractile cells in adult skeletal muscle called myofibers. Satellite cells reside in a niche between the basal lamina and sarcolemma of myofibers. Isolating single myofibers and their associated satellite cells provides a culture system that partially mimics the in vivo environment. We describe methods for isolating and culturing intact individual myofibers and their associated satellite cells from the mouse extensor digitorum longus muscle. Following dissection and isolation of individual myofibers we provide protocols for myofiber transplantation, satellite cell transfection, immune detection of satellite cell antigens, and assays to examine satellite cell self-renewal and proliferation.


Assuntos
Técnicas de Cultura de Células , Separação Celular/métodos , Imunofluorescência , Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Camundongos , Células Satélites de Músculo Esquelético/transplante , Transfecção
6.
Circ Res ; 118(7): 1143-50; discussion 1150, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27034276

RESUMO

This "Controversies in Cardiovascular Research" article evaluates the evidence for and against the hypothesis that the circulating blood level of growth differentiation factor 11 (GDF11) decreases in old age and that restoring normal GDF11 levels in old animals rejuvenates their skeletal muscle and reverses pathological cardiac hypertrophy and cardiac dysfunction. Studies supporting the original GDF11 hypothesis in skeletal and cardiac muscle have not been validated by several independent groups. These new studies have either found no effects of restoring normal GDF11 levels on cardiac structure and function or have shown that increasing GDF11 or its closely related family member growth differentiation factor 8 actually impairs skeletal muscle repair in old animals. One possible explanation for what seems to be mutually exclusive findings is that the original reagent used to measure GDF11 levels also detected many other molecules so that age-dependent changes in GDF11 are still not well known. The more important issue is whether increasing blood [GDF11] repairs old skeletal muscle and reverses age-related cardiac pathologies. There are substantial new and existing data showing that GDF8/11 can exacerbate rather than rejuvenate skeletal muscle injury in old animals. There is also new evidence disputing the idea that there is pathological hypertrophy in old C57bl6 mice and that GDF11 therapy can reverse cardiac pathologies. Finally, high [GDF11] causes reductions in body and heart weight in both young and old animals, suggestive of a cachexia effect. Our conclusion is that elevating blood levels of GDF11 in the aged might cause more harm than good.


Assuntos
Envelhecimento/patologia , Proteínas Morfogenéticas Ósseas/uso terapêutico , Fatores de Diferenciação de Crescimento/uso terapêutico , Doenças Musculares/tratamento farmacológico , Envelhecimento/sangue , Animais , Proteínas Morfogenéticas Ósseas/sangue , Proteínas Morfogenéticas Ósseas/deficiência , Proteínas Morfogenéticas Ósseas/farmacologia , Proteínas Morfogenéticas Ósseas/toxicidade , Caquexia/induzido quimicamente , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Fatores de Diferenciação de Crescimento/sangue , Fatores de Diferenciação de Crescimento/deficiência , Fatores de Diferenciação de Crescimento/farmacologia , Fatores de Diferenciação de Crescimento/toxicidade , Coração/efeitos dos fármacos , Humanos , Hipertrofia , Camundongos Endogâmicos C57BL , Modelos Animais , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Músculos/patologia , Doenças Musculares/fisiopatologia , Miocárdio/patologia , Miostatina/fisiologia , Miostatina/uso terapêutico , Miostatina/toxicidade , Parabiose , Proteínas Recombinantes/uso terapêutico , Proteínas Recombinantes/toxicidade , Regeneração/efeitos dos fármacos , Reprodutibilidade dos Testes , Transdução de Sinais , Método Simples-Cego , Proteína Smad2/fisiologia , Proteína Smad3/fisiologia
7.
Nat Med ; 20(3): 265-71, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24531379

RESUMO

Skeletal muscle aging results in a gradual loss of skeletal muscle mass, skeletal muscle function and regenerative capacity, which can lead to sarcopenia and increased mortality. Although the mechanisms underlying sarcopenia remain unclear, the skeletal muscle stem cell, or satellite cell, is required for muscle regeneration. Therefore, identification of signaling pathways affecting satellite cell function during aging may provide insights into therapeutic targets for combating sarcopenia. Here, we show that a cell-autonomous loss in self-renewal occurs via alterations in fibroblast growth factor receptor-1, p38α and p38ß mitogen-activated protein kinase signaling in satellite cells from aged mice. We further demonstrate that pharmacological manipulation of these pathways can ameliorate age-associated self-renewal defects. Thus, our data highlight an age-associated deregulation of a satellite cell homeostatic network and reveal potential therapeutic opportunities for the treatment of progressive muscle wasting.


Assuntos
Regulação Enzimológica da Expressão Gênica , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Músculo Esquelético/metabolismo , Células-Tronco/citologia , Envelhecimento , Animais , Proliferação de Células , Transplante de Células , Meio Ambiente , Feminino , Fator 1 de Crescimento de Fibroblastos/metabolismo , Citometria de Fluxo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Células Satélites de Músculo Esquelético/citologia , Transdução de Sinais , Fatores de Tempo
8.
Stem Cells ; 30(10): 2212-20, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22865615

RESUMO

Transplantation of myogenic stem cells possesses great potential for long-term repair of dystrophic muscle. However, a single donor muscle biopsy is unlikely to provide enough cells to effectively transplant the muscle mass of a patient affected by muscular dystrophy. Expansion of cells ex vivo using traditional culture techniques significantly reduces engraftment potential. We hypothesized that activation of Notch signaling during ex vivo expansion would maintain donor cell engraftment potential. In this study, we expanded freshly isolated canine muscle-derived cells on tissue culture plates coated with Delta-1(ext) -IgG to activate Notch signaling or with human IgG as a control. A model of canine-to-murine xenotransplantation was used to quantitatively compare canine muscle cell engraftment and determine whether engrafted donor cells could function as satellite cells in vivo. We show that Delta-1(ext) -IgG inhibited differentiation of canine muscle-derived cells and increased the level of genes normally expressed in myogenic precursors. Moreover, cells expanded on Delta-1(ext) -IgG resulted in a significant increase in the number of donor-derived fibers, as compared to cells expanded on human IgG, reaching engraftment levels similar to freshly isolated cells. Importantly, cells expanded on Delta-1(ext) -IgG engrafted to the recipient satellite cell niche and contributed to further regeneration. A similar strategy of expanding human muscle-derived cells on Notch ligand might facilitate engraftment and muscle regeneration for patients affected with muscular dystrophy.


Assuntos
Sobrevivência de Enxerto , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Receptores Notch/metabolismo , Células-Tronco/metabolismo , Animais , Comunicação Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Cães , Humanos , Imunoglobulina G/farmacologia , Camundongos , Camundongos SCID , Células Musculares/citologia , Células Musculares/transplante , Músculo Esquelético/citologia , Regeneração , Transdução de Sinais , Especificidade da Espécie , Transplante de Células-Tronco , Células-Tronco/citologia , Transplante Heterólogo
9.
Dev Biol ; 356(2): 486-95, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21683695

RESUMO

During embryogenesis, muscle and bone develop in close temporal and spatial proximity. We show that Indian Hedgehog, a bone-derived signaling molecule, participates in growth of skeletal muscle. In Ihh(-/-) embryos, skeletal muscle development appears abnormal at embryonic day 14.5 and at later ages through embryonic day 20.5, dramatic losses of hindlimb muscle occur. To further examine the role of Ihh in myogenesis, we manipulated Ihh expression in the developing chick hindlimb. Reduction of Ihh in chicken embryo hindlimbs reduced skeletal muscle mass similar to that seen in Ihh(-/-) mouse embryos. The reduction in muscle mass appears to be a direct effect of Ihh since ectopic expression of Ihh by RCAS retroviral infection of chicken embryo hindlimbs restores muscle mass. These effects are independent of bone length, and occur when Shh is not expressed, suggesting Ihh acts directly on fetal myoblasts to regulate secondary myogenesis. Loss of muscle mass in Ihh null mouse embryos is accompanied by a dramatic increase in myoblast apoptosis by a loss of p21 protein. Our data suggest that Ihh promotes fetal myoblast survival during their differentiation into secondary myofibers by maintaining p21 protein levels.


Assuntos
Proteínas Aviárias/fisiologia , Extremidades/embriologia , Proteínas Hedgehog/fisiologia , Músculo Esquelético/embriologia , Animais , Sobrevivência Celular , Embrião de Galinha , Camundongos , Desenvolvimento Muscular , Mioblastos/citologia , Receptores Patched , Receptores de Superfície Celular/análise , Retroviridae/genética , Transdução de Sinais , Transdução Genética
10.
J Cell Biochem ; 112(5): 1410-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21321994

RESUMO

Alveolar rhabdomyosarcoma (ARMS) are characterized by the expression of chimeric transcription factors Pax3-FKHR and Pax7-FKHR, due to chromosomal translocations fusing PAX3 or PAX7 with the FKHR gene. Although ARMS exhibits a muscle lineage phenotype, the cells evade terminal differentiation despite expressing the potent myogenic transcriptional regulator MyoD. Here we show that while Pax7-FKHR inhibits MyoD-dependent transcription, MyoD enhances Pax7-FKHR activity in myogenic cell cultures. Importantly, this effect is not recapitulated by close related transcription factor myogenin and involves specific MyoD functional domains, distinct from those required for Pax7 to regulate MyoD during muscle formation. Together, these results suggest that although repressed as a myogenic regulatory factor, MyoD can play an active role in ARMS by augmenting Pax7-FKHR function.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína MyoD/metabolismo , Neoplasias de Tecido Muscular/genética , Proteínas de Fusão Oncogênica/metabolismo , Fator de Transcrição PAX7/metabolismo , Rabdomiossarcoma Alveolar/genética , Proteína Forkhead Box O1 , Humanos , Desenvolvimento Muscular/genética , Proteína MyoD/genética , Miogenina/genética , Miogenina/metabolismo , Fenótipo , Transcrição Gênica
11.
Sci Transl Med ; 2(57): 57ra83, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21068442

RESUMO

Skeletal muscle is dynamic, adapting to environmental needs, continuously maintained, and capable of extensive regeneration. These hallmarks diminish with age, resulting in a loss of muscle mass, reduced regenerative capacity, and decreased functionality. Although the mechanisms responsible for this decline are unclear, complex changes within the local and systemic environment that lead to a reduction in regenerative capacity of skeletal muscle stem cells, termed satellite cells, are believed to be responsible. We demonstrate that engraftment of myofiber-associated satellite cells, coupled with an induced muscle injury, markedly alters the environment of young adult host muscle, eliciting a near-lifelong enhancement in muscle mass, stem cell number, and force generation. The abrogation of age-related atrophy appears to arise from an increased regenerative capacity of the donor stem cells, which expand to occupy both myonuclei in myofibers and the satellite cell niche. Further, these cells have extensive self-renewal capabilities, as demonstrated by serial transplantation. These near-lifelong, physiological changes suggest an approach for the amelioration of muscle atrophy and diminished function that arise with aging through myofiber-associated satellite cell transplantation.


Assuntos
Transplante de Células , Senescência Celular , Músculo Esquelético/citologia , Animais , Proteínas de Fluorescência Verde/genética , Camundongos , Músculo Esquelético/fisiologia , Regeneração , Engenharia Tecidual
12.
J Cell Biol ; 190(3): 427-41, 2010 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-20696709

RESUMO

Skeletal muscle postnatal growth and repair depend on satellite cells and are regulated by molecular signals within the satellite cell niche. We investigated the molecular and cellular events that lead to altered myogenesis upon genetic ablation of Syndecan-3, a component of the satellite cell niche. In the absence of Syndecan-3, satellite cells stall in S phase, leading to reduced proliferation, increased cell death, delayed onset of differentiation, and markedly reduced numbers of Pax7(+) satellite cells accompanied by myofiber hypertrophy and an increased number of centrally nucleated myofibers. We show that the aberrant cell cycle and impaired self-renewal of explanted Syndecan-3-null satellite cells are rescued by ectopic expression of the constitutively active Notch intracellular domain. Furthermore, we show that Syndecan-3 interacts with Notch and is required for Notch processing by ADAM17/tumor necrosis factor-alpha-converting enzyme (TACE) and signal transduction. Together, our data support the conclusion that Syndecan-3 and Notch cooperate in regulating homeostasis of the satellite cell population and myofiber size.


Assuntos
Desenvolvimento Muscular , Receptores Notch/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Sindecana-3/metabolismo , Animais , Ciclo Celular , Diferenciação Celular , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Proliferação de Células , Células Cultivadas , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/citologia , Transdução de Sinais , Sindecana-3/deficiência , Sindecana-3/genética
13.
Mol Cell Biol ; 22(4): 1140-9, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11809805

RESUMO

Oncogenic Ha-Ras is a potent inhibitor of skeletal muscle cell differentiation, yet the Ras effector mediating this process remains unidentified. Here we demonstrate that the atypical protein kinases (aPKCs; lambda and/or zeta) are downstream Ras effectors responsible for Ras-dependent inhibition of myogenic differentiation in a satellite cell line. First, ectopic expression of Ha-RasG12V induces translocation of PKClambda from the cytosol to the nucleus, suggesting that aPKCs are activated by Ras in myoblasts. The aPKCs function as downstream Ras effectors since inhibition of aPKCs by expression of a dominant negative PKCzeta mutant or by treatment of cells with an inhibitor, GO6983, promotes myogenesis in skeletal muscle satellite cells expressing oncogenic Ha-Ras. Arresting cell proliferation synergistically enhances myogenic differentiation only when aPKCs are also inhibited. Thus, the repression of myogenic differentiation in a satellite cell line appears to be directly mediated by aPKCs acting as Ras effectors and indirectly mediated via stimulation of cell proliferation.


Assuntos
Isoenzimas/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/citologia , Proteína Quinase C/metabolismo , Proteínas ras/metabolismo , Animais , Butadienos/farmacologia , Carbazóis/farmacologia , Diferenciação Celular , Divisão Celular/fisiologia , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Genes Reporter , Imuno-Histoquímica , Indóis/farmacologia , Isoenzimas/genética , Camundongos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/fisiologia , Nitrilas/farmacologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA