Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 673: 44-50, 2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37356144

RESUMO

Cancer incidence is increasing annually, and the invasion of cancer into the stroma significantly affects cancer metastasis. The stroma primarily comprises an abundant extracellular matrix (ECM) that interacts closely with cancer cells. Cancer cells use the ECM as a scaffold to migrate from a tumor via mechanical actions such as pushing and pulling the fibers. The purpose of this study is to clarify the effects of elastic modulus differences on cell migration behavior based on the same ECM fiber structure. We observe temporal changes in the morphology of cancer cells and the surrounding ECM to elucidate the relationship between changes in the mechanical properties of the ECM and the invasive behavior of cancer cells. We analyze the shape and migration distance of cancer cells and the displacement field of the ECM by varying the fiber elastic modulus but fixing the ECM density. Increasing the elastic modulus results in a protruding cell shape, which indicates the maximum displacement of the ECM around the cell. Additionally, differences in cell migration speed and dispersion based on the elastic modulus are observed. The behavior of cells with increasing elasticity is classified via cluster analysis. Owing to the chemical cross-linking of the fibers, some cells cannot deform the surrounding tissue. This is attributable to the gel state of the ECM and microscopic fluctuations in the fiber density around the cells. We successfully assessed the effect of changes in the ECM modulus on cell mortality and morphology to reveal the mechanism of cancer invasion.


Assuntos
Matriz Extracelular , Neoplasias , Humanos , Elasticidade , Módulo de Elasticidade , Movimento Celular
2.
PLoS One ; 17(7): e0271171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35816482

RESUMO

Among increasing eye diseases, glaucoma may hurt the optic nerves and lead to vision loss, the treatment of which is to reduce intraocular pressure (IOP). In this research, we introduce a new concept of the surgery simulator for Minimally Invasive Glaucoma Surgery (MIGS). The concept is comprised of an anterior eye model and a fluidic circulatory system. The model made of flexible material includes a channel like the Schlemm's canal (SC) and a membrane like the trabecular meshwork (TM) covering the SC. The system can monitor IOP in the model by a pressure sensor. In one of the MIGS procedures, the TM is cleaved to reduce the IOP. Using the simulator, ophthalmologists can practice the procedure and measure the IOP. First, considering the characteristics of human eyes, we defined requirements and target performances for the simulator. Next, we designed and manufactured the prototype. Using the prototype, we measured the IOP change before and after cleaving the TM. Finally, we demonstrated the availability by comparing experimental results and target performances. This simulator is also expected to be used for evaluations and developments of new MIGS instruments and ophthalmic surgery robots in addition to the surgical training of ophthalmologists.


Assuntos
Glaucoma , Próteses Visuais , Glaucoma/cirurgia , Humanos , Pressão Intraocular , Microfluídica , Malha Trabecular/fisiologia
3.
Micromachines (Basel) ; 10(5)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052324

RESUMO

Three-dimensional (3D) microfluidic channels, which simulate human tissues such as blood vessels, are useful in surgical simulator models for evaluating surgical devices and training novice surgeons. However, animal models and current artificial models do not sufficiently mimic the anatomical and mechanical properties of human tissues. Therefore, we established a novel fabrication method to fabricate an eye model for use as a surgical simulator. For the glaucoma surgery task, the eye model consists of a sclera with a clear cornea; a 3D microchannel with a width of 200-500 µm, representing the Schlemm's canal (SC); and a thin membrane with a thickness of 40-132 µm, representing the trabecular meshwork (TM). The sclera model with a clear cornea and SC was fabricated by 3D molding. Blow molding was used to fabricate the TM to cover the inner surface of the sclera part. Soft materials with controllable mechanical behaviors were used to fabricate the sclera and TM parts to mimic the mechanical properties of human tissues. Additionally, to simulate the surgery with constraints similar to those in a real operation, the eye model was installed on a skull platform. Therefore, in this paper, we propose an integration method for fabricating an eye model that has a 3D microchannel representing the SC and a membrane representing the TM, to develop a glaucoma model for training novice surgeons.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1723-1726, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440727

RESUMO

Vitreoretinal surgery is one of the most difficult surgical operations, even for experienced surgeons. Thus, a master-slave eye surgical robot has been developed to assist the surgeon in safely performing vitreoretinal surgeries; however, in the master-slave control, the robotic positioning accuracy depends on the surgeon's coordination skills. This paper proposes a new method of autonomous robotic positioning using the shadow of the surgical instrument. First, the microscope image is segmented into three regions-namely, a micropipette, its shadow, and the eye ground-using a Gaussian mixture model (GMM). The tips of the micropipette and its shadow are then extracted from the contour lines of the segmented regions. The micropipette is then autonomously moved down to the simulated eye ground until the distance between the tips of micropipette and its shadow in the microscopic image reaches a predefined threshold. To handle possible occlusions, the tip of the shadow is estimated using a Kalman filter. Experiments to evaluate the robotic positioning accuracy in the vertical direction were performed. The results show that the autonomous positioning using the Kalman filter enhanced the accuracy of robotic positioning.


Assuntos
Procedimentos Cirúrgicos Robóticos , Cirurgia Vitreorretiniana , Humanos , Procedimentos Cirúrgicos Robóticos/instrumentação , Procedimentos Cirúrgicos Robóticos/métodos , Cirurgia Vitreorretiniana/instrumentação , Cirurgia Vitreorretiniana/métodos , Cirurgia Vitreorretiniana/normas
5.
Micromachines (Basel) ; 9(3)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30424035

RESUMO

Bionic microscopic vessel models can contribute to the development of vascular treatment skills and techniques for clinical training. Most microscopic vessel models are limited to two dimensions, but three-dimensional (3D) models are important for surgery, such as on retina microscopic vessels, for the observation of colon microvessels, for measuring the deformability of red blood cell (RBC), and so on. Therefore, bionic 3D blood vessel models are increasingly in demand. For this reason, it is necessary to establish 3D fabrication techniques for microchannels. In this study, we established two fabrication methods for 3D microfluidic devices for the development of microscopic vessel models. First, we employed an exposure method using photolithographic technology. Second, we employed a 3D method using femtosecond laser and mask hybrid exposure (FMEx). Both methods made it possible to fabricate a millimeter-scale 3D structure with a submicrometer resolution and achieve an easy injection of solution. This is because it was possible to fabricate typical microfluidic channels used for model inlet and outlet ports. Furthermore, in the FMEx method, we employed an acid-diffusion effect using a chemically amplified resist to form a circular channel cross-section. The acid-diffusion effect made it realizable to fabricate a smooth surface independent of the laser scanning line width. Thus, we succeeded in establishing two methods for the fabrication of bionic 3D microfluidic devices with microfluidic channels having diameters of 15⁻16 µm for mimicking capillary vessels.

6.
PLoS One ; 13(5): e0196131, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29758028

RESUMO

The present study was performed to establish a novel ocular surgery simulator for training in peeling of the inner limited membrane (ILM). This simulator included a next-generation artificial ILM with mechanical properties similar to the natural ILM that could be peeled underwater in the same manner as in actual surgery. An artificial eye consisting of a fundus and eyeball parts was fabricated. The artificial eye was installed in the eye surgery simulator. The fundus part was mounted in the eyeball, which consisted of an artificial sclera, retina, and ILM. To measure the thickness of the fabricated ILM on the artificial retina, we calculated the distance of the step height as the thickness of the artificial ILM. Two experienced ophthalmologists then assessed the fabricated ILM by sensory evaluation. The minimum thickness of the artificial ILM was 1.9 ± 0.3 µm (n = 3). We were able to perform the peeling task with the ILM in water. Based on the sensory evaluation, an ILM with a minimum thickness and 1000 degrees of polymerization was suitable for training. We installed the eye model on an ocular surgery simulator, which allowed for the performance of a sequence of operations similar to ILM peeling. In conclusion, we developed a novel ocular surgery simulator for ILM peeling. The artificial ILM was peeled underwater in the same manner as in an actual operation.


Assuntos
Simulação por Computador , Membrana Epirretiniana/cirurgia , Fundo de Olho , Membranas Artificiais , Procedimentos Cirúrgicos Oftalmológicos , Perfurações Retinianas/cirurgia , Água/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA