Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 12(4)2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35454159

RESUMO

Propofol is a broadly used intravenous anesthetic agent that can cause cardiovascular effects, including bradycardia and asystole. A possible mechanism for these effects is slowing cardiac pacemaker activity due to inhibition of the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels. However, it remains unclear how propofol affects the allosteric nature of the voltage- and cAMP-dependent gating mechanism in HCN channels. To address this aim, we investigated the effect of propofol on HCN channels (HCN4 and HCN2) in heterologous expression systems using a whole-cell patch clamp technique. The extracellular application of propofol substantially suppressed the maximum current at clinical concentrations. This was accompanied by a hyperpolarizing shift in the voltage dependence of channel opening. These effects were significantly attenuated by intracellular loading of cAMP, even after considering the current modification by cAMP in opposite directions. The differential degree of propofol effects in the presence and absence of cAMP was rationalized by an allosteric gating model for HCN channels, where we assumed that propofol affects allosteric couplings between the pore, voltage-sensor, and cyclic nucleotide-binding domain (CNBD). The model predicted that propofol enhanced autoinhibition of pore opening by unliganded CNBD, which was relieved by the activation of CNBD by cAMP. Taken together, these findings reveal that propofol acts as an allosteric modulator of cAMP-dependent gating in HCN channels, which may help us to better understand the clinical action of this anesthetic drug.


Assuntos
Anestésicos , Propofol , Anestésicos/farmacologia , AMP Cíclico/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/fisiologia , Canais de Potássio/metabolismo , Propofol/farmacologia
2.
J Mol Cell Cardiol ; 161: 86-97, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34375616

RESUMO

Delayed rectifier K+ current (IKs) is a key contributor to repolarization of action potentials. This study investigated the mechanisms underlying the adrenoceptor-induced potentiation of IKs in pulmonary vein cardiomyocytes (PVC). PVC were isolated from guinea pig pulmonary vein. The action potentials and IKs current were recorded using perforated and conventional whole-cell patch-clamp techniques. The expression of IKs was examined using immunocytochemistry and Western blotting. KCNQ1, a IKs pore-forming protein was detected as a signal band approximately 100 kDa in size, and its immunofluorescence signal was found to be mainly localized on the cell membrane. The IKs current in PVC was markedly enhanced by both ß1- and ß2-adrenoceptor stimulation with a negative voltage shift in the current activation, although the potentiation was more effectively induced by ß2-adrenoceptor stimulation than ß1-adrenoceptor stimulation. Both ß-adrenoceptor-mediated increases in IKs were attenuated by treatment with the adenylyl cyclase (AC) inhibitor or protein kinase A (PKA) inhibitor. Furthermore, the IKs current was increased by α1-adrenoceptor agonist but attenuated by the protein kinase C (PKC) inhibitor. PVC exhibited action potentials in normal Tyrode solution which was slightly reduced by HMR-1556 a selective IKs blocker. However, HMR-1556 markedly reduced the ß-adrenoceptor-potentiated firing rate. The stimulatory effects of ß- and α1-adrenoceptor on IKs in PVC are mediated via the PKA and PKC signal pathways. HMR-1556 effectively reduced the firing rate under ß-adrenoceptor activation, suggesting that the functional role of IKs might increase during sympathetic excitation under in vivo conditions.


Assuntos
Canais de Potássio de Retificação Tardia/metabolismo , Miócitos Cardíacos/metabolismo , Veias Pulmonares/metabolismo , Receptores Adrenérgicos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Agonistas alfa-Adrenérgicos/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Cobaias , Átrios do Coração/metabolismo , Isoproterenol/farmacologia , Canal de Potássio KCNQ1/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Norepinefrina/farmacologia , Técnicas de Patch-Clamp , Proteína Quinase C/metabolismo , Veias Pulmonares/citologia , Transdução de Sinais
3.
J Pharmacol Sci ; 127(1): 127-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25704028

RESUMO

The human ether-a-go-go-related gene (HERG) potassium current (IHERG) has been shown to decrease in amplitude following stimulation with Gq protein-coupled receptors (GqRs), such as α1-adrenergic and M1-muscarinic receptors (α1R and M1R, respectively), at least partly via the reduction of membrane phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). The present study was designed to investigate the modulation of HERG channels by PI(4,5)P2 and phosphatidylinositol4-phosphate 5-kinase (PI(4)P5-K), a synthetic enzyme of PI(4,5)P2. Whole-cell patch-clamp recordings were used to examine the activity of HERG channels expressed heterologously in Chinese Hamster Ovary cells. The stimulation of α1R with phenylephrine or M1R with acetylcholine decreased the amplitude of IHERG accompanied by a significant acceleration of deactivation kinetics and the effects on IHERG were significantly attenuated in cells expressing PI(4)P5-K. The density of IHERG in cells expressing GqRs alone was significantly increased by the coexpression of PI(4)P5-K without significant differences in the voltage dependence of activation and deactivation kinetics. The kinase-deficient substitution mutant, PI(4)P5-K-K138A did not have these counteracting effects on the change in IHERG by M1R stimulation. These results suggest that the current density of IHERG is closely dependent on the membrane PI(4,5)P2 level, which is regulated by PI(4)P5-K and GqRs and that replenishing PI(4,5)P2 by PI(4)P5-K recovers IHERG.


Assuntos
Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Acetilcolina/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Canais de Potássio Éter-A-Go-Go/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/efeitos dos fármacos , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mutação , Fenilefrina/farmacologia , Fosfatidilinositol 4,5-Difosfato/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Transfecção
5.
Nat Methods ; 10(12): 1232-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24122038

RESUMO

In mammals and birds, thermoregulation to conserve body temperature is vital to life. Multiple mechanisms of thermogeneration have been proposed, localized in different subcellular organelles. However, visualizing thermogenesis directly in intact organelles has been challenging. Here we have developed genetically encoded, GFP-based thermosensors (tsGFPs) that enable visualization of thermogenesis in discrete organelles in living cells. In tsGFPs, a tandem formation of coiled-coil structures of the Salmonella thermosensing protein TlpA transmits conformational changes to GFP to convert temperature changes into visible and quantifiable fluorescence changes. Specific targeting of tsGFPs enables visualization of thermogenesis in the mitochondria of brown adipocytes and the endoplasmic reticulum of myotubes. In HeLa cells, tsGFP targeted to mitochondria reveals heterogeneity in thermogenesis that correlates with the electrochemical gradient. Thus, tsGFPs are powerful tools to noninvasively assess thermogenesis in living cells.


Assuntos
Proteínas de Fluorescência Verde/química , Salmonella enterica/metabolismo , Temperatura , Adenoviridae/genética , Adipócitos Marrons/citologia , Proteínas de Bactérias/química , DNA Complementar/metabolismo , Escherichia coli/metabolismo , Células HeLa , Temperatura Alta , Humanos , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Conformação Proteica
6.
J Membr Biol ; 235(2): 73-87, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20490473

RESUMO

HL-1 is the adult murine cardiac cell line that can be passaged repeatedly in vitro without losing differentiated phenotype. The present study was designed to characterize the rapidly activating delayed rectifier potassium current, I (Kr), endogenously expressed in HL-1 cells using the whole-cell patch-clamp technique. In the presence of nisoldipine, depolarizing voltage steps applied from a holding potential of -50 mV evoked the time-dependent outward current, followed by slowly decaying outward tail current upon return to the holding potential. The amplitude of the current increased with depolarizations up to 0 mV but then progressively decreased with further depolarizations. The time-dependent outward current as well as the tail current were highly sensitive to block by E-4031 and dofetilide (IC(50) of 21.1 and 15.1 nM, respectively) and almost totally abolished by micromolar concentrations of each drug, suggesting that most of the outward current in HL-1 cells was attributable to I (Kr). The magnitude of I (Kr) available from HL-1 cells (18.1 +/- 1.5 pA pF(-1)) was sufficient for reliable measurements of various gating parameters. RT-PCR and Western blot analysis revealed the expression of alternatively spliced forms of mouse ether-a-go-go-related genes (mERG1), the full-length mERG1a and the N-terminally truncated mERG1b isoforms. Knockdown of mERG1 transcripts with small interfering RNA (siRNA) dramatically reduced I (Kr) amplitude, confirming the molecular link of mERG1 and I (Kr) in HL-1 cells. These findings demonstrate that HL-1 cells possess I (Kr) with properties comparable to those in native cardiac I (Kr) and provide an experimental model suitable for studies of I (Kr) channels.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Antiarrítmicos/farmacologia , Western Blotting , Linhagem Celular , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/genética , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Nisoldipino/farmacologia , Técnicas de Patch-Clamp , Piperidinas/farmacologia , Potássio/metabolismo , Piridinas/farmacologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Biochem J ; 393(Pt 1): 171-80, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16143005

RESUMO

The effect of extracellular ATP on adipogenesis was investigated using the mouse 3T3-L1 cell line. Incubation of cells with ATP (1-100 microM) for 5 min induced actin filament reorganization and membrane ruffling mediated through P2Y receptors. Enhancement of preadipocyte migration into fat cell clusters is one of the essential processes of adipose tissue development in vivo and cell migration assays revealed that stimulation of P2Y receptors enhanced chemokinesis (migration) in a concentration dependent manner. In this cell line, growth arrest is required before initiation of differentiation and growth-arrested post-confluent cells can be converted into adipocytes by the presence of the adipogenic hormones dexamethasone, 3-isobutyl-1-methylxanthine and insulin. On the other hand, those hormones alone do not trigger differentiation in proliferating cells. ATP did not induce differentiation when applied alone to either proliferating or postconfluent cells. By contrast, proliferating cells (density <50%) preincubated with ATP for 5 min and subsequently given the adipogenic hormones in the continued presence of ATP, underwent adipocyte differentiation mediated through phospholipase C-coupled P2Y receptors. These adipocytes were found to show very similar characteristics, including morphology and intracellular triacylglycerol accumulation compared with adipocytes differentiated from post-confluent preadipocytes with those adipogenic hormones. When proliferating cells were preincubated with ATP before the addition of the adipogenic hormones, gene expression of aP2 (adipose protein 2) was markedly increased within 6 days, whereas without ATP pretreatment the expression level stayed very low. These results suggest that extracellular ATP renders preadipocytes responsive to adipogenic hormones during the growth phase.


Assuntos
Trifosfato de Adenosina/farmacologia , Adipócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Receptores Purinérgicos P2/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Animais , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Inibidores Enzimáticos , Camundongos , Suramina , Fatores de Tempo
8.
Neuroreport ; 15(1): 197-201, 2004 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-15106857

RESUMO

Cytosolic Ca2+ concentration ([Ca2+]i) was measured in isolated rat dorsal root ganglion (DRG) neurons using the fluorescent Ca2+ indicator fura-2. Exposure to high (50 mM) extracellular K+ evoked a robust increase in [Ca2+]i, which was almost totally abolished by concomitant presence of nisoldipine (10 microM) and omega-conotoxin GVIA (10 microM). Whereas either high (30 mM) D-glucose alone or ouabain (100 microM) alone did not appreciably affect the high K+-induced [Ca2+]i elevation, neurons pretreated with high D-glucose together with ouabain exhibited a significantly larger [Ca2+]i response to high K+ stimulation, which was almost completely inhibited by nisoldipine and omega-conotoxin GVIA. These results suggest that a combination of high glucose and suppressed Na+/K+ pump activity potentiates the [Ca2+]i elevation stimulated by activation of the voltage-gated Ca2+ channels in rat DRG neurons.


Assuntos
Cálcio/metabolismo , Citosol/efeitos dos fármacos , Glucose/administração & dosagem , Neurônios Aferentes/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Citosol/metabolismo , Masculino , Neurônios Aferentes/metabolismo , Ratos , Ratos Sprague-Dawley
9.
Biochem J ; 381(Pt 2): 389-96, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15107014

RESUMO

Stimulation of P2 receptors with micromolar concentration of ATP evokes a transient increase in [Ca2+]i (intracellular free Ca2+ concentration), primarily due to release of Ca2+ from intracellular stores; such stimulation also triggers almost complete suppression of thapsigargin-evoked sustained [Ca2+]i increase mediated through a store-operated Ca2+ entry pathway in rat brown adipocytes. We investigated the role of cytoskeletal actin in the inhibitory effect of the extracellular ATP on store-operated Ca2+ entry, using fura 2 fluorescence for continuous measurement of [Ca2+]i, and using Alexa fluor 488-phalloidin staining of actin. Disassembly of actin networks by cytochalasin D (1 microM) or latrunculin A (3 microM) prevented the inhibitory effect of ATP (10 microM) on the thapsigargin (100 nM)-evoked store-operated Ca2+ entry, without changing the effect of ATP in increasing [Ca2+]i. In normal cells, bath application of ATP induced a transient [Ca2+]i increase, consisting of a rapid increase (the rising phase) and the subsequent decrease (the declining phase) to a lower steady level despite the continued presence of the agonist. Disruption of actin assemblies did not significantly affect the rising phase, but prevented the declining phase. Cells incubated with 10 microM ATP for 4 min demonstrated marked accumulations of actin filaments at the cell periphery, showing protrusions at the cell surface; this actin-assembly process is mediated through P2 receptors. In cells treated with cytochalasin D or latrunculin A, extracellular ATP did not induce actin redistribution. These results suggest that the actin reorganization plays a role in ATP-induced inhibition of store-operated Ca2+ entry in rat brown adipocytes.


Assuntos
Citoesqueleto de Actina/fisiologia , Trifosfato de Adenosina/fisiologia , Adipócitos/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Cálcio/metabolismo , Espaço Extracelular/química , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Adipócitos/química , Adipócitos/citologia , Animais , Canais de Cálcio , Sinalização do Cálcio , Forma Celular/fisiologia , Células Cultivadas , Citoesqueleto/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Tapsigargina/farmacologia
11.
Exp Physiol ; 87(6): 643-52, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12447447

RESUMO

Extracellular ATP in micromolar concentrations evokes a transient elevation in intracellular free Ca(2+) concentration ([Ca(2+)](i)), which arises primarily from a release of Ca(2+) from intracellular stores in rat brown adipocytes. We investigated the mechanisms underlying this transient nature of [Ca(2+)](i) elevation during exposure to ATP by using fura-2 fluorescence measurements together with the P2 receptor antagonists pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) and suramin. Extracellular ATP (10 microM) almost completely depressed the thapsigargin (100 nM)-evoked [Ca(2+)](i) elevation mediated through store-operated Ca(2+) entry. The inhibitory effect of ATP was antagonized by PPADS with IC(50) of 0.7 microM. In the presence of PPADS at concentrations of more than 5 microM, the ATP-induced [Ca(2+)](i) elevation became sustained during the entire duration of the agonist application, although the magnitude of the sustained [Ca(2+)](i) elevation was reduced in a concentration-dependent manner by PPADS with an IC(50) of 200 microM. In contrast, the ATP-induced [Ca(2+)](i) elevation was blocked by suramin in a concentration range similar to that required to antagonize the inhibitory effect of ATP on the store-operated pathway. These results suggest that the [Ca(2+)](i) responses to extracellular ATP in rat brown adipocytes are mediated through the activation of at least two distinct P2 receptors exhibiting different sensitivities to PPADS but similar sensitivities to suramin. Extracellular ATP stimulates the PPADS-resistant P2 receptor to mobilize intracellular Ca(2+) stores, which is probably followed by the activation of store-operated Ca(2+) entry. Extracellular ATP, however, would inhibit this Ca(2+) entry process through the stimulation of the PPADS-sensitive P2-receptor, which may underlie the transient nature of [Ca(2+)](i) elevation in response to extracellular ATP.


Assuntos
Trifosfato de Adenosina/farmacologia , Tecido Adiposo Marrom/efeitos dos fármacos , Cálcio/metabolismo , Líquido Intracelular/efeitos dos fármacos , Receptores Purinérgicos P2/biossíntese , Tecido Adiposo Marrom/metabolismo , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Líquido Intracelular/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA