Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Cell Rep Med ; 5(5): 101547, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38703764

RESUMO

Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Neoplasias Renais , Proteogenômica , Humanos , Proteogenômica/métodos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Transcriptoma/genética , Masculino , Feminino , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica
2.
Clin Proteomics ; 21(1): 7, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291365

RESUMO

BACKGROUND: Omics characterization of pancreatic adenocarcinoma tissue is complicated by the highly heterogeneous and mixed populations of cells. We evaluate the feasibility and potential benefit of using a coring method to enrich specific regions from bulk tissue and then perform proteogenomic analyses. METHODS: We used the Biopsy Trifecta Extraction (BioTExt) technique to isolate cores of epithelial-enriched and stroma-enriched tissue from pancreatic tumor and adjacent tissue blocks. Histology was assessed at multiple depths throughout each core. DNA sequencing, RNA sequencing, and proteomics were performed on the cored and bulk tissue samples. Supervised and unsupervised analyses were performed based on integrated molecular and histology data. RESULTS: Tissue cores had mixed cell composition at varying depths throughout. Average cell type percentages assessed by histology throughout the core were better associated with KRAS variant allele frequencies than standard histology assessment of the cut surface. Clustering based on serial histology data separated the cores into three groups with enrichment of neoplastic epithelium, stroma, and acinar cells, respectively. Using this classification, tumor overexpressed proteins identified in bulk tissue analysis were assigned into epithelial- or stroma-specific categories, which revealed novel epithelial-specific tumor overexpressed proteins. CONCLUSIONS: Our study demonstrates the feasibility of multi-omics data generation from tissue cores, the necessity of interval H&E stains in serial histology sections, and the utility of coring to improve analysis over bulk tissue data.

3.
Mol Cell Proteomics ; 23(1): 100687, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029961

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer types, partly because it is frequently identified at an advanced stage, when surgery is no longer feasible. Therefore, early detection using minimally invasive methods such as blood tests may improve outcomes. However, studies to discover molecular signatures for the early detection of PDAC using blood tests have only been marginally successful. In the current study, a quantitative glycoproteomic approach via data-independent acquisition mass spectrometry was utilized to detect glycoproteins in 29 patient-matched PDAC tissues and sera. A total of 892 N-linked glycopeptides originating from 141 glycoproteins had PDAC-associated changes beyond normal variation. We further evaluated the specificity of these serum-detectable glycoproteins by comparing their abundance in 53 independent PDAC patient sera and 65 cancer-free controls. The PDAC tissue-associated glycoproteins we have identified represent an inventory of serum-detectable PDAC-associated glycoproteins as candidate biomarkers that can be potentially used for the detection of PDAC using blood tests.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Biomarcadores Tumorais/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Glicoproteínas , Espectrometria de Massas
4.
Cell Rep Med ; 4(9): 101173, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37582371

RESUMO

We introduce a pioneering approach that integrates pathology imaging with transcriptomics and proteomics to identify predictive histology features associated with critical clinical outcomes in cancer. We utilize 2,755 H&E-stained histopathological slides from 657 patients across 6 cancer types from CPTAC. Our models effectively recapitulate distinctions readily made by human pathologists: tumor vs. normal (AUROC = 0.995) and tissue-of-origin (AUROC = 0.979). We further investigate predictive power on tasks not normally performed from H&E alone, including TP53 prediction and pathologic stage. Importantly, we describe predictive morphologies not previously utilized in a clinical setting. The incorporation of transcriptomics and proteomics identifies pathway-level signatures and cellular processes driving predictive histology features. Model generalizability and interpretability is confirmed using TCGA. We propose a classification system for these tasks, and suggest potential clinical applications for this integrated human and machine learning approach. A publicly available web-based platform implements these models.


Assuntos
Aprendizado Profundo , Neoplasias , Proteogenômica , Humanos , Neoplasias/genética , Proteômica , Aprendizado de Máquina
5.
J Proteome Res ; 20(12): 5227-5240, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34670092

RESUMO

The 2021 Metrics of the HUPO Human Proteome Project (HPP) show that protein expression has now been credibly detected (neXtProt PE1 level) for 18 357 (92.8%) of the 19 778 predicted proteins coded in the human genome, a gain of 483 since 2020 from reports throughout the world reanalyzed by the HPP. Conversely, the number of neXtProt PE2, PE3, and PE4 missing proteins has been reduced by 478 to 1421. This represents remarkable progress on the proteome parts list. The utilization of proteomics in a broad array of biological and clinical studies likewise continues to expand with many important findings and effective integration with other omics platforms. We present highlights from the Immunopeptidomics, Glycoproteomics, Infectious Disease, Cardiovascular, Musculo-Skeletal, Liver, and Cancers B/D-HPP teams and from the Knowledgebase, Mass Spectrometry, Antibody Profiling, and Pathology resource pillars, as well as ethical considerations important to the clinical utilization of proteomics and protein biomarkers.


Assuntos
Benchmarking , Proteoma , Bases de Dados de Proteínas , Humanos , Espectrometria de Massas/métodos , Proteoma/análise , Proteoma/genética , Proteômica/métodos
6.
Cell ; 184(19): 5031-5052.e26, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34534465

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient survival. Toward understanding the underlying molecular alterations that drive PDAC oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, and glycoproteomic analyses were used to characterize proteins and their modifications. In addition, whole-genome sequencing, whole-exome sequencing, methylation, RNA sequencing (RNA-seq), and microRNA sequencing (miRNA-seq) were performed on the same tissues to facilitate an integrated proteogenomic analysis and determine the impact of genomic alterations on protein expression, signaling pathways, and post-translational modifications. To ensure robust downstream analyses, tumor neoplastic cellularity was assessed via multiple orthogonal strategies using molecular features and verified via pathological estimation of tumor cellularity based on histological review. This integrated proteogenomic characterization of PDAC will serve as a valuable resource for the community, paving the way for early detection and identification of novel therapeutic targets.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteogenômica , Adenocarcinoma/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Carcinoma Ductal Pancreático/diagnóstico , Estudos de Coortes , Células Endoteliais/metabolismo , Epigênese Genética , Feminino , Dosagem de Genes , Genoma Humano , Glicólise , Glicoproteínas/biossíntese , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Neoplasias Pancreáticas/diagnóstico , Fenótipo , Fosfoproteínas/metabolismo , Fosforilação , Prognóstico , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Especificidade por Substrato , Transcriptoma/genética
7.
Cell ; 184(16): 4348-4371.e40, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34358469

RESUMO

Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Proteogenômica , Acetilação , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise por Conglomerados , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Neoplasias/metabolismo , Fosforilação , Ligação Proteica , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Ubiquitinação
8.
Alzheimers Dement ; 17(6): 984-1004, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33480174

RESUMO

Intron retention (IR) has been implicated in the pathogenesis of complex diseases such as cancers; its association with Alzheimer's disease (AD) remains unexplored. We performed genome-wide analysis of IR through integrating genetic, transcriptomic, and proteomic data of AD subjects and mouse models from the Accelerating Medicines Partnership-Alzheimer's Disease project. We identified 4535 and 4086 IR events in 2173 human and 1736 mouse genes, respectively. Quantitation of IR enabled the identification of differentially expressed genes that conventional exon-level approaches did not reveal. There were significant correlations of intron expression within innate immune genes, like HMBOX1, with AD in humans. Peptides with a high probability of translation from intron-retained mRNAs were identified using mass spectrometry. Further, we established AD-specific intron expression Quantitative Trait Loci, and identified splicing-related genes that may regulate IR. Our analysis provides a novel resource for the search for new AD biomarkers and pathological mechanisms.


Assuntos
Doença de Alzheimer , Autopsia , Encéfalo/patologia , Modelos Animais de Doenças , Genômica , Íntrons/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Proteômica , Locos de Características Quantitativas , Transcriptoma
9.
Sci Rep ; 10(1): 16275, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004987

RESUMO

We analyzed 1196 proteins in longitudinal plasma samples from participants in a commercial wellness program, including samples collected pre-diagnosis from ten cancer patients and 69 controls. For three individuals ultimately diagnosed with metastatic breast, lung, or pancreatic cancer, CEACAM5 was a persistent longitudinal outlier as early as 26.5 months pre-diagnosis. CALCA, a biomarker for medullary thyroid cancer, was hypersecreted in metastatic pancreatic cancer at least 16.5 months pre-diagnosis. ERBB2 levels spiked in metastatic breast cancer between 10.0 and 4.0 months pre-diagnosis. Our results support the value of deep phenotyping seemingly healthy individuals in prospectively inferring disease transitions.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias/sangue , Idoso , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Antígeno Carcinoembrionário/sangue , Carcinoma Neuroendócrino/sangue , Carcinoma Neuroendócrino/diagnóstico , Estudos de Casos e Controles , Proteínas Ligadas por GPI/sangue , Promoção da Saúde/estatística & dados numéricos , Humanos , Estudos Longitudinais , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/diagnóstico , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/sangue , Neoplasias/diagnóstico , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/diagnóstico , Estudos Prospectivos , Neoplasias da Glândula Tireoide/sangue , Neoplasias da Glândula Tireoide/diagnóstico , Fatores de Tempo
10.
Nat Commun ; 11(1): 5301, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067450

RESUMO

The Human Proteome Organization (HUPO) launched the Human Proteome Project (HPP) in 2010, creating an international framework for global collaboration, data sharing, quality assurance and enhancing accurate annotation of the genome-encoded proteome. During the subsequent decade, the HPP established collaborations, developed guidelines and metrics, and undertook reanalysis of previously deposited community data, continuously increasing the coverage of the human proteome. On the occasion of the HPP's tenth anniversary, we here report a 90.4% complete high-stringency human proteome blueprint. This knowledge is essential for discerning molecular processes in health and disease, as we demonstrate by highlighting potential roles the human proteome plays in our understanding, diagnosis and treatment of cancers, cardiovascular and infectious diseases.


Assuntos
Doença/genética , Proteoma/genética , Projeto Genoma Humano , Humanos , Proteoma/química , Proteoma/metabolismo , Proteômica
11.
Proc Natl Acad Sci U S A ; 117(35): 21813-21820, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817414

RESUMO

Transitions from health to disease are characterized by dysregulation of biological networks under the influence of genetic and environmental factors, often over the course of years to decades before clinical symptoms appear. Understanding these dynamics has important implications for preventive medicine. However, progress has been hindered both by the difficulty of identifying individuals who will eventually go on to develop a particular disease and by the inaccessibility of most disease-relevant tissues in living individuals. Here we developed an alternative approach using polygenic risk scores (PRSs) based on genome-wide association studies (GWAS) for 54 diseases and complex traits coupled with multiomic profiling and found that these PRSs were associated with 766 detectable alterations in proteomic, metabolomic, and standard clinical laboratory measurements (clinical labs) from blood plasma across several thousand mostly healthy individuals. We recapitulated a variety of known relationships (e.g., glutamatergic neurotransmission and inflammation with depression, IL-33 with asthma) and found associations directly suggesting therapeutic strategies (e.g., Ω-6 supplementation and IL-13 inhibition for amyotrophic lateral sclerosis) and influences on longevity (leukemia inhibitory factor, ceramides). Analytes altered in high-genetic-risk individuals showed concordant changes in disease cases, supporting the notion that PRS-associated analytes represent presymptomatic disease alterations. Our results provide insights into the molecular pathophysiology of a range of traits and suggest avenues for the prevention of health-to-disease transitions.


Assuntos
Biomarcadores/sangue , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Doenças Assintomáticas/epidemiologia , Estudos de Coortes , Bases de Dados Genéticas , Progressão da Doença , Testes Genéticos/métodos , Humanos , Metabolômica/métodos , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Proteômica/métodos , Fatores de Risco
12.
J Bioinform Comput Biol ; 18(3): 2040009, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32698720

RESUMO

Clustering analysis of gene expression data is essential for understanding complex biological data, and is widely used in important biological applications such as the identification of cell subpopulations and disease subtypes. In commonly used methods such as hierarchical clustering (HC) and consensus clustering (CC), holistic expression profiles of all genes are often used to assess the similarity between samples for clustering. While these methods have been proven successful in identifying sample clusters in many areas, they do not provide information about which gene sets (functions) contribute most to the clustering, thus limiting the interpretability of the resulting cluster. We hypothesize that integrating prior knowledge of annotated gene sets would not only achieve satisfactory clustering performance but also, more importantly, enable potential biological interpretation of clusters. Here we report ClusterMine, an approach that identifies clusters by assessing functional similarity between samples through integrating known annotated gene sets in functional annotation databases such as Gene Ontology. In addition to the cluster membership of each sample as provided by conventional approaches, it also outputs gene sets that most likely contribute to the clustering, thus facilitating biological interpretation. We compare ClusterMine with conventional approaches on nine real-world experimental datasets that represent different application scenarios in biology. We find that ClusterMine achieves better performances and that the gene sets prioritized by our method are biologically meaningful. ClusterMine is implemented as an R package and is freely available at: www.genemine.org/clustermine.php.


Assuntos
Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Algoritmos , Ciclo Celular/genética , Bases de Dados Genéticas , Humanos , Anotação de Sequência Molecular , Neoplasias/genética , Neoplasias/patologia , Células-Tronco Pluripotentes/fisiologia , Células Receptoras Sensoriais/fisiologia
13.
Cell ; 182(1): 200-225.e35, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649874

RESUMO

To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteogenômica , Adenocarcinoma de Pulmão/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Fusão Oncogênica , Fenótipo , Fosfoproteínas/metabolismo , Proteoma/metabolismo
14.
J Biol Chem ; 295(25): 8537-8549, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32371391

RESUMO

Overexpression of centromeric proteins has been identified in a number of human malignancies, but the functional and mechanistic contributions of these proteins to disease progression have not been characterized. The centromeric histone H3 variant centromere protein A (CENPA) is an epigenetic mark that determines centromere identity. Here, using an array of approaches, including RNA-sequencing and ChIP-sequencing analyses, immunohistochemistry-based tissue microarrays, and various cell biology assays, we demonstrate that CENPA is highly overexpressed in prostate cancer in both tissue and cell lines and that the level of CENPA expression correlates with the disease stage in a large cohort of patients. Gain-of-function and loss-of-function experiments confirmed that CENPA promotes prostate cancer cell line growth. The results from the integrated sequencing experiments suggested a previously unidentified function of CENPA as a transcriptional regulator that modulates expression of critical proliferation, cell-cycle, and centromere/kinetochore genes. Taken together, our findings show that CENPA overexpression is crucial to prostate cancer growth.


Assuntos
Proteína Centromérica A/metabolismo , Histonas/metabolismo , Neoplasias da Próstata/patologia , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína Centromérica A/antagonistas & inibidores , Proteína Centromérica A/genética , Mutação com Ganho de Função , Histonas/genética , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
15.
Comput Struct Biotechnol J ; 18: 676-685, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257051

RESUMO

Tumor heterogeneity is generated through a combination of genetic and epigenetic mechanisms, the latter of which plays an important role in the generation of stem like cells responsible for tumor formation and metastasis. Although the development of single cell transcriptomic technologies holds promise to deconvolute this complexity, a number of these techniques have limitations including drop-out and uneven coverage, which challenge the further delineation of tumor heterogeneity. We adopted deep and full-length single-cell RNA sequencing on Fluidigm's Polaris platform to reveal the cellular, transcriptomic, and isoform heterogeneity of SUM149, a triple negative breast cancer (TNBC) cell line. We first validate the quality of the TNBC sequencing data with the sequencing data from erythroleukemia K562 cell line as control. We next scrutinized well-defined marker genes for cancer stem-like cell to identify different cell populations. We then profile the isoform expression data to investigate the heterogeneity of alternative splicing patterns. Though classified as triple-negative breast cancer, the SUM149 stem cells show heterogeneous expression of marker receptors (ER, PR, and HER2) across the cells. We identified three cell populations that express patterns of stemness: epithelial-mesenchymal transition (EMT) cancer stem cells (CSCs), mesenchymal-epithelial transition (MET) CSCs and Dual-EMT-MET CSCs. These cells also manifested a high level of heterogeneity in alternative splicing patterns. For example, CSCs have shown different expression patterns of the CD44v6 exon, as well as different levels of truncated EGFR transcripts, which may suggest different potentials for proliferation and invasion among cancer stem cells. Our study identified features of the landscape of previously underestimated cellular, transcriptomic, and isoform heterogeneity of cancer stem cells in triple-negative breast cancers.

16.
Sci Rep ; 9(1): 6805, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048771

RESUMO

Both genetic and lifestyle factors contribute to an individual's disease risk, suggesting a multi-omic approach is essential for personalized prevention. Studies have examined the effectiveness of lifestyle coaching on clinical outcomes, however, little is known about the impact of genetic predisposition on the response to lifestyle coaching. Here we report on the results of a real-world observational study in 2531 participants enrolled in a commercial "Scientific Wellness" program, which combines multi-omic data with personalized, telephonic lifestyle coaching. Specifically, we examined: 1) the impact of this program on 55 clinical markers and 2) the effect of genetic predisposition on these clinical changes. We identified sustained improvements in clinical markers related to cardiometabolic risk, inflammation, nutrition, and anthropometrics. Notably, improvements in HbA1c were akin to those observed in landmark trials. Furthermore, genetic markers were associated with longitudinal changes in clinical markers. For example, individuals with genetic predisposition for higher LDL-C had a lesser decrease in LDL-C on average than those with genetic predisposition for average LDL-C. Overall, these results suggest that a program combining multi-omic data with lifestyle coaching produces clinically meaningful improvements, and that genetic predisposition impacts clinical responses to lifestyle change.


Assuntos
Suscetibilidade a Doenças , Predisposição Genética para Doença , Promoção da Saúde , Estilo de Vida , Tutoria , Variação Biológica da População , Biomarcadores , Comportamentos Relacionados com a Saúde , Humanos , Polimorfismo de Nucleotídeo Único , Vigilância em Saúde Pública , Locos de Características Quantitativas , Característica Quantitativa Herdável
17.
Bioinformatics ; 34(23): 3975-3982, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29912344

RESUMO

Motivation: Finding driver genes that are responsible for the aberrant proliferation rate of cancer cells is informative for both cancer research and the development of targeted drugs. The established experimental and computational methods are labor-intensive. To make algorithms feasible in real clinical settings, methods that can predict driver genes using less experimental data are urgently needed. Results: We designed an effective feature selection method and used Support Vector Machines (SVM) to predict the essentiality of the potential driver genes in cancer cell lines with only 10 genes as features. The accuracy of our predictions was the highest in the Broad-DREAM Gene Essentiality Prediction Challenge. We also found a set of genes whose essentiality could be predicted much more accurately than others, which we called Accurately Predicted (AP) genes. Our method can serve as a new way of assessing the essentiality of genes in cancer cells. Availability and implementation: The raw data that support the findings of this study are available at Synapse. https://www.synapse.org/#! Synapse: syn2384331/wiki/62825. Source code is available at GitHub. https://github.com/GuanLab/DREAM-Gene-Essentiality-Challenge. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Biomarcadores Tumorais/genética , Variações do Número de Cópias de DNA , Genes Neoplásicos , Software , Biologia Computacional , Humanos , RNA Mensageiro/genética
18.
Nat Biotechnol ; 35(8): 747-756, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28714965

RESUMO

Personal data for 108 individuals were collected during a 9-month period, including whole genome sequences; clinical tests, metabolomes, proteomes, and microbiomes at three time points; and daily activity tracking. Using all of these data, we generated a correlation network that revealed communities of related analytes associated with physiology and disease. Connectivity within analyte communities enabled the identification of known and candidate biomarkers (e.g., gamma-glutamyltyrosine was densely interconnected with clinical analytes for cardiometabolic disease). We calculated polygenic scores from genome-wide association studies (GWAS) for 127 traits and diseases, and used these to discover molecular correlates of polygenic risk (e.g., genetic risk for inflammatory bowel disease was negatively correlated with plasma cystine). Finally, behavioral coaching informed by personal data helped participants to improve clinical biomarkers. Our results show that measurement of personal data clouds over time can improve our understanding of health and disease, including early transitions to disease states.


Assuntos
Biomarcadores , Biologia Computacional/métodos , Bases de Dados Factuais , Estudo de Associação Genômica Ampla/métodos , Biomarcadores/análise , Biomarcadores/sangue , Exercício Físico/fisiologia , Humanos , Estudos Longitudinais , Metaboloma , Microbiota , Modelos Estatísticos , Monitorização Fisiológica , Neoplasias/genética , Neoplasias/metabolismo , Estado Nutricional , Proteoma
19.
Proc Natl Acad Sci U S A ; 114(25): 6581-6586, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28607076

RESUMO

Identification of biomarkers and therapeutic targets is a critical goal of precision medicine. N-glycoproteins are a particularly attractive class of proteins that constitute potential cancer biomarkers and therapeutic targets for small molecules, antibodies, and cellular therapies. Using mass spectrometry (MS), we generated a compendium of 1,091 N-glycoproteins (from 40 human primary lymphomas and cell lines). Hierarchical clustering revealed distinct subtype signatures that included several subtype-specific biomarkers. Orthogonal immunological studies in 671 primary lymphoma tissue biopsies and 32 lymphoma-derived cell lines corroborated MS data. In anaplastic lymphoma kinase-positive (ALK+) anaplastic large cell lymphoma (ALCL), integration of N-glycoproteomics and transcriptome sequencing revealed an ALK-regulated cytokine/receptor signaling network, including vulnerabilities corroborated by a genome-wide clustered regularly interspaced short palindromic screen. Functional targeting of IL-31 receptor ß, an ALCL-enriched and ALK-regulated N-glycoprotein in this network, abrogated ALK+ALCL growth in vitro and in vivo. Our results highlight the utility of functional proteogenomic approaches for discovery of cancer biomarkers and therapeutic targets.


Assuntos
Biomarcadores Tumorais/genética , Linfoma/genética , Transcriptoma/genética , Linhagem Celular Tumoral , Humanos , Proteogenômica/métodos , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/genética
20.
Mol Cancer Res ; 15(7): 821-830, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28258094

RESUMO

Chromosomal translocations and aneuploidy are hallmarks of cancer genomes; however, the impact of these aberrations on the nucleome (i.e., nuclear structure and gene expression) is not yet understood. Here, the nucleome of the colorectal cancer cell line HT-29 was analyzed using chromosome conformation capture (Hi-C) to study genome structure, complemented by RNA sequencing (RNA-seq) to determine the consequent changes in genome function. Importantly, translocations and copy number changes were identified at high resolution from Hi-C data and the structure-function relationships present in normal cells were maintained in cancer. In addition, a new copy number-based normalization method for Hi-C data was developed to analyze the effect of chromosomal aberrations on local chromatin structure. The data demonstrate that at the site of translocations, the correlation between chromatin organization and gene expression increases; thus, chromatin accessibility more directly reflects transcription. In addition, the homogeneously staining region of chromosome band 8q24 of HT-29, which includes the MYC oncogene, interacts with various loci throughout the genome and is composed of open chromatin. The methods, described herein, can be applied to the assessment of the nucleome in other cell types with chromosomal aberrations.Implications: Findings show that chromosome conformation capture identifies chromosomal abnormalities at high resolution in cancer cells and that these abnormalities alter the relationship between structure and function. Mol Cancer Res; 15(7); 821-30. ©2017 AACR.


Assuntos
Núcleo Celular/genética , Cromossomos/ultraestrutura , Neoplasias do Colo/genética , Variação Estrutural do Genoma/genética , Neoplasias do Colo/patologia , Biologia Computacional , Variações do Número de Cópias de DNA/genética , Genoma Humano/genética , Células HT29 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Conformação de Ácido Nucleico , Relação Estrutura-Atividade , Translocação Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA