Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Cell Neurosci ; 16: 993019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505513

RESUMO

Bone-marrow mesenchymal stem cells (BM-MSCs) have not yet proven any significant therapeutic efficacy in spinal cord injury (SCI) clinical trials, due to the hostile microenvironment of the injured spinal cord at the acute phase. This study aims to modulate the inflammatory milieu by lipopolysaccharide (LPS) and granulocyte colony-stimulating factor (G-CSF) to improve the BM-MSCs therapy. For this purpose, we determined the optimum injection time and sub-toxic dosage of LPS following a T10 contusion injury. Medium-dose LPS administration may result in a local anti-inflammatory beneficial role. This regulatory role is associated with an increase in NF-200-positive cells, significant tissue sparing, and improvement in functional recovery compared to the SCI control group. The second aim was to examine the potential ability of LPS and LPS + G-CSF combination therapy to modulate the lesion site before BM-MSC (1 × 105 cells) intra-spinal injection. Our results demonstrated combination therapy increased potency to enhance the anti-inflammatory response (IL-10 and Arg-1) and decrease inflammatory markers (TNF-α and CD86) and caspase-3 compared to BM-MSC monotherapy. Histological analysis revealed that combination groups displayed better structural remodeling than BM-MSC monotherapy. In addition, Basso-Beattie-Bresnahan (BBB) scores show an increase in motor recovery in all treatment groups. Moreover, drug therapy shows faster recovery than BM-MSC monotherapy. Our results suggest that a sub-toxic dose of LPS provides neuroprotection to SCI and can promote the beneficial effect of BM-MSC in SCI. These findings suggest that a combination of LPS or LPS + G-CSF prior BM-MSC transplantation is a promising approach for optimizing BM-MSC-based strategies to treat SCI. However, because of the lack of some methodological limitations to examine the survival rate and ultimate fate of transplanted BM-MSCs followed by LPS administration in this study, further research needs to be done in this area. The presence of only one-time point for evaluating the inflammatory response (1 week) after SCI can be considered as one of the limitations of this study. We believed that the inclusion of additional time points would provide more information about the effect of our combination therapy on the microglia/macrophage polarization dynamic at the injured spinal cord.

2.
Neurotox Res ; 40(5): 1415-1426, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36053462

RESUMO

Intranasal mesenchymal stem cells (MSCs) delivery is a non-invasive method that has received interests for treatment of neurodegenerative diseases, such as multiple sclerosis (MS). The impact of intranasal MSCs on intermittent cuprizone model of demyelination was a focus of this study. C57/BL6 mice were fed with 0.3% cuprizone in an intermittent or single ways. Luxol fast blue (LFB), Rotarod test, quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry and western blot (WB) were used for interpretation of outcomes. MSCs effectively homed to the corpus callosum area, were able to improve motor coordination and to promote myelin recovery in the intermittent cuprizone (INTRCPZ/MSCs). Astrogliosis (GFAP+ cells) and microgliosis (Iba-1+ cells) were hampered, and more mature oligodendrocyte cells (APC+ cells) were identified in mice receiving INTRCPZ/MSCs. Such treatment also considerably reduced markers related to the macrophage type 1 (M1) cells, namely iNOS and CD86, but it recovered the M2 markers MRC-1 and TREM-2. In addition, a remarkable decrease in the expressions of pro-inflammatory IL-1ß and TNFα but an increase in the rate of anti-inflammatory TGF-ß and IL-10 were identified in mice that underwent INTRCPZ/MSCs therapy. Finally, microvascular changes were evaluated, and a noticeable increase in the expression of the endothelial cell marker CD31 was found in the INTRCPZ/MSCs-treated mice (p < 0.05 for all). The outcomes are representative of the efficacy of intranasal MSCs delivery in intermittent cuprizone model of MS for reshaping macrophage polarity along with modification of glial, inflammatory, and angiogenic markers in favor of therapy.


Assuntos
Doenças Desmielinizantes , Células-Tronco Mesenquimais , Esclerose Múltipla , Animais , Corpo Caloso/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/terapia , Modelos Animais de Doenças , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Daru ; 27(2): 721-733, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31736017

RESUMO

BACKGROUND: The clinical application of methotrexate (MTX), an efficacious cytotoxic drug, is restricted due to its associated liver toxicity. Ellagic acid (EA), a natural polyphenol, possesses hepatoprotective, antioxidant and anti-inflammatory properties. OBJECTIVES: The present study seeks to address the hepatoprotective effects of Ellagic acid (EA) against MTX-mediated oxidative stress (OS) and widen our current knowledge of the underlying molecular mechanisms of MTX toxicity. METHODS: Wistar rats were orally given EA (5 mg/kg and 10 mg/kg) for 10 successive days and at the end of the third day they were administered a single dose of MTX (20 mg/kg i.p). RESULTS: After performing biochemical analysis, liver enzymes and malondialdehyde were significantly higher in the MTX group, indicating hepatic oxidative damage. MTX-induced OS was further confirmed with observation of events such as reactive oxygen species (ROS) overproduction, mitochondrial outer membrane potential decrease, mitochondrial swelling, cytochrome c release and caspase-3/9 increase, resulting in apoptosis. Furthermore, overexpression of pro-inflammatory factors such as nuclear factor kappa B (NF-ĸB) and interleukin 6 (IL-6) indicated the MTX-induced inflammation in MTX-treated group. Interestingly, EA was able to significantly prevent OS, mitochondrial dysfunction, apoptosis and inflammation induced by MTX. Also, EA-treated rats demonstrated significant upregulation of both nuclear factor erythroid 2-related factor 2 (Nrf2) and hemoxygenase-1 (HO-1), which were considerably downregulated in MTX-treated rats. CONCLUSIONS: EA protects rats against MTX-induced apoptosis and mitochondrial dysfunction via up-Regulating Nrf2 and HO-1 expression and inhibiting the NF-κB signaling pathway. Therefore, EA may protect patients against MTX-induced hepatotoxicity and encourage its clinical application. Graphical abstract Beneficial effect of Ellagic acid (EA) on Methotrexate (MTX)-induced liver injury: molecular mechanism.


Assuntos
Ácido Elágico/administração & dosagem , Metotrexato/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Ácido Elágico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Malondialdeído/metabolismo , Mitocôndrias/metabolismo , Ratos , Ratos Wistar , Regulação para Cima
4.
Clin Exp Pharmacol Physiol ; 46(8): 711-722, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30919988

RESUMO

Minocycline as a member of the tetracycline family is a lipophilic broad-spectrum antibiotic, which can display some non-antibiotic properties such as antioxidant, antiapoptosis, neuroprotection and modulation of pharmacological traits of drugs of abuse (ie, reward, sensitization and/or analgesia). Thus, the aim of the present study was to investigate the effect of intracerebroventricular (ICV) injection of minocycline on morphine-induced memory impairment and motor function in male Wistar rats. The behavioural responses were measured by a passive avoidance test for evaluating memory, and in the open field for studying motor function. Furthermore, the expression of Phospho-cAMP response element-binding protein (P-CREB) and c-Fos were assessed using immunohistochemistry in the dorsal hippocampus and basolateral amygdala (BLA). Our results showed that morphine dose-dependently impairs memory consolidation, but not motor function. Maximum effect was achieved with morphine at dose of 5 mg/kg. Pretreatment with ICV injection of minocycline (50 µg/rat) prevented morphine-induced memory impairment, but there was no effect on motor function. The results of immunohistochemistry analysis demonstrated that morphine decreased expression of P-CREB positive cells compared to saline control group in the BLA, but not in the dorsal hippocampus. On the other hand, pretreatment of animals with ICV injection of minocycline increased the expression of P-CREB in both brain areas. Moreover, there was no significant change in the expression of c-Fos positive cells in above-mentioned regions. In summary, our results indicated that pretreatment with ICV injection of minocycline prevented morphine-induced memory impairment and increased P-CREB expression in the dorsal hippocampus and BLA, which may explain its memory improvement property.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipocampo/efeitos dos fármacos , Transtornos da Memória/metabolismo , Minociclina/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Injeções , Masculino , Transtornos da Memória/induzido quimicamente , Minociclina/administração & dosagem , Morfina/efeitos adversos , Fosfoproteínas/metabolismo , Ratos , Ratos Wistar
5.
Avicenna J Med Biotechnol ; 11(1): 35-42, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800241

RESUMO

BACKGROUND: Nowadays, transplantation of Bone marrow-derived Mesenchymal Stromal Cells (BMSCs) is currently an important alternative therapy for patient's type 1 diabetes mellitus. But a number of critical obstacles lie ahead of this new strategy including reducing stem cell homing to the damaged tissue due to oxidative stress. The purpose of the present study was to investigate whether preconditioning of BMSCs with SDF-1 could enhance their homing to the pancreas and promote regeneration of the pancreatic ß cells after being intravenously injected. METHODS: Mice BMSCs were isolated and expanded. Cell proliferation was assayed by MTT Assay. Preconditioning was performed with 10 ng/ml SDF-1α for 24 hr. Male NMRI mice were injected with high-dose STZ (150 mg/kg). The preconditioned or un-preconditioned BMSCs at a dose of 1×106 cells were infused via the tail vein. Blood and pancreatic tissue samples were taken from all mice for flow cytometry, biochemical and histological studies. RESULTS: Proliferation and homing of BMSCs to the pancreas were significantly increased in the BMSCs with SDF-1α preconditioning. Differentiation of transplanted BMSCs, were significantly increased in preconditioning group. Although BMSCs without SDF-1 preconditioning exhibited remarkable recovery of pancreatic islets structure but this recovery were significantly increased in the BMSCs with SDF-1α preconditioning. CONCLUSION: Our results showed the effectiveness of SDF-1α preconditioning in BMSCs transplantation of STZ induced diabetes mice which might be achieved through improvement of BMSCs homing into the injured pancreas.

6.
J Mol Histol ; 50(2): 129-140, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30671880

RESUMO

Bone marrow-derived mesenchymal stem cells (BMMSCs) transplantation has shown to be effective in treating chronic kidney disease. However, the effectiveness of this strategy is constrained by low homing and survival rate of transplanted cells in the injured organs. Therefore, developing strategies to improve homing and cell survival rate and therapeutic potential in cell-based therapies seems necessary. The purpose of this study is to evaluate the effect of pretreating BMMSCs with melatonin (MT) on the prosurvival and renoprotective of transplanted cells into the irreversible model of unilateral ureteral obstruction. Adult male Sprague-Dawley rats were randomized into four groups: Sham, UUO, UUO + BMMSCs, and UUO + BMMSCs + MT. The results of our study demonstrated that preconditioning with MT enhanced homing of BMMSCs into the injured kidney. MT reduced the number of TUNEL positive transplanted cells in the UUO + BMMSCs + MT group. The UUO + BMMSCs + MT group showed lower expressions of TGF-ß1, α-SMA and TNF-α at both gene and protein levels but higher expression of E-cadherin compared with the UUO + BMMSCs group. In addition, MT preconditioned BMMSCs ameliorated basement membrane disruption and histological status of injured renal tubules and also reduced fibrosis in damaged kidneys. In conclusion, our results show that stem cells pretreated by MT may represent a feasible approach for improving the beneficial effects of stem cell therapy and significantly enhance their survival after transplantation to the injured kidney.


Assuntos
Melatonina/farmacologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Pré-Medicação/métodos , Insuficiência Renal Crônica/terapia , Animais , Sobrevivência de Enxerto/efeitos dos fármacos , Rim/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Regeneração/efeitos dos fármacos
7.
Environ Toxicol Pharmacol ; 58: 11-20, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29278859

RESUMO

Industrial and agricultural developments in recent years have resulted in the excessive discharge of arsenic into the environment, making arsenic toxicity a major worldwide concern. Oxidative stress is considered the primary mechanism for arsenic toxicity. The main objective of this study was to evaluate acetyl-l-carnitine's (ALC) protective ability against the arsenic-induced hepatotoxicity. For this purpose, male Wistar rats were distributed randomly into 5 groups of 8 rats each: control, arsenic (5 mg/kg) and arsenic plus ALC (5 mg/kg; 100, 200, 300 mg/kg). The animals were gavaged for 21 consecutive days. Liver tissue samples were extracted 24 h after the last treatment and were later analyzed for biochemical and histological alterations. The arsenic-induced oxidative damage was confirmed by elevation of malondialdehyde (MDA), a lipid peroxidation byproduct, as well as depletion in physiological antioxidant content such as superoxide dismutase (SOD) and catalase (CAT). Furthermore, alterations in mitochondrial functions including a significant decrease of mitochondrial outer membrane potential and reactive oxygen species (ROS) generation increase, mitochondrial swelling, release of cytochrome c and consequent activation of caspase-3 and caspase-9 and initiation of apoptosis, was observed following arsenic administration. Moreover, the inflammation was confirmed by the overexpression of inflammatory mediators such as NF-ĸB and IL-1 and IL-6. The present study demonstrated that ALC ameliorates arsenic-induced oxidative damage, mitochondrial dysfunction, apoptosis, inflammation and histological damage. ALC's protective features against arsenic hepatotoxicity may be due to this agent's antioxidant and anti-inflammatory properties as well as its stabilizing effects on mitochondrial function.


Assuntos
Acetilcarnitina/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Arsênio/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Acetilcarnitina/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Catalase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocromos c/metabolismo , Glutationa/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Malondialdeído/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Fator de Transcrição RelA/metabolismo
8.
J Cell Biochem ; 119(3): 2939-2950, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29130552

RESUMO

Stromal cell-derived factor-1α (SDF-1α) has been known to implicate in homing of MSCs, and resveratrol has been reported to have a positive influence on SDF-1 level in the site of injury. In this study, a combined strategy was applied to evaluate bone marrow-derived MSCs (BMSCs) homing to the rat model of liver cirrhosis induced by common bile duct ligation (CBDL): (1) pretreatment delivery of resveratrol into the cirrhotic liver, and (2) transplantation of ex vivo BMSC preconditioning with SDF-1α. BMSCs were preconditioned with 10 ng/µL SDF-1α for 1 h and then labeled with the CM-Dil. Cirrhosis was induced by CBDL. Animals received intraperitoneal injection of resveratrol for 7 days, started on day 28 of CBDL post-operative. On day 36 post-operative, 1 × 106 of SDF-1α-preconditioned BMSCs was injected via caudal vein. Animals were sacrificed at 72 h post-cell transplantation. Immunofluorescence and flow cytometry assessments showed that the BMSC+SDF+RV group had an increased rate of homing into the liver, but it had a decreased rate of homing into the lung and spleen, as compared with the other groups (P < 0.05). The BMSC+SDF+RV group showed high protein expression of SIRT1, but low protein expression of p53 in the liver (P < 0.05 vs other groups). CXCR4 and matrix metalloproteinase (MMP)-9 highly expressed in SDF-1α-preconditioned BMSCs in vitro, and that AKTs and CXCL12 expressed in injured liver undergoing resveratrol injection. Our findings suggest that reseveratrol pretreatment prior to SDF-1α preconditioning could be a promising strategy for designing cell-based therapies for liver cirrhosis.


Assuntos
Células da Medula Óssea/metabolismo , Quimiocina CXCL12/farmacologia , Facilitação Imunológica de Enxerto/métodos , Cirrose Hepática/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Estilbenos/farmacologia , Animais , Células da Medula Óssea/patologia , Modelos Animais de Doenças , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Células-Tronco Mesenquimais/patologia , Ratos , Ratos Sprague-Dawley , Resveratrol
9.
Int. j. morphol ; 35(4): 1597-1606, Dec. 2017. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-893174

RESUMO

RESUMEN: Las células madre de la línea germinal masculina son factores clave para la espermatogénesis masculina y la fertilidad. Las células sustentaculares (células de Sertoli) como células somáticas juegan un papel fundamental en la creación de un microambiente esencial para la auto-renovación y diferenciación de las células de la línea germinal masculina. Las células madre mesenquimales son reconocidas como células auto-renovables y multipotentes capaces de diferenciarse en múltiples tipos de células. La generación de células germinales masculinas a partir de células madre mesenquimales puede proporcionar un método terapéutico para tratar la infertilidad masculina. En este estudio, las células mesenquimales derivadas de la médula ósea (BMMSCs) se recuperaron de la médula ósea de ratones de 6-8 semanas de edad del Instituto de Investigación Médico Naval (NMRI). En el estudio se aislaron las células sustentaculares y se enrriquecieron usando placas revestidas con lectina. Se obtuvo el medio de condición celular después de diferentes intervalos de tiempo. Posteriormente se cultivaron las BMMSC con diferentes concentraciones de SCCM y medio de Eagle modificado por Dulbecco (DMEM) en diversos momentos. Se evaluaron marcadores específicos de células de línea germinal usando la reacción en cadena de polimerasa transcriptasa inversa (RT-PCR) e inmunocitoquímica. Los resultados mostraron que las BMMSCs cultivadas con SCCM durante 48h exhibieron transcritos específicos de línea germinal (Mvh, Iid4, piwil2) (p <0,05) y marcadores (Mvh, Scp3). Nuestros resultados indican que el cultivo de BMMSCs con SCCM puede conducir a la diferenciación efectiva de BMMSCs en células germinales y proporcionar una estrategia de tratamiento para la infertilidad masculina.


SUMMARY: Male germ line stem cells are key factors for male spermatogenesis and fertility. Sustentacular cells (Sertoli cells) as somatic cells play a pivotal role in creating essential microenvironment for the self-renewal and differentiation of the male germ line cells. Mesenchymal stem cells are recognized as self-renewing and multipotent cells able to differentiate into multiple cell types. The generation of male germ cells from mesenchymal stem cells may provide a therapeutic method to treat male infertility. In this study, Bone marrow derived mesenchymal cells (BMMSCs) were retrieved from the bone marrow of 6-8-week old Naval Medical Research Institute (NMRI) mice. Sustentacular cells (Sertoli cells) were isolated and made rich using lectin coated plates. Sustentacular cell condition medium (SCCM) was collected after different time intervals. Then the BMMSCs were cultured with different concentration of SCCM and Dulbecco's Modified Eagle's medium (DMEM) at various times. Specific markers of Germ line cells were evaluated by using Reverse transcriptase polymerase chain reaction (RT-PCR) and immunocytochemistry. The results showed that BMMSCs cultured with SCCM for 48h exhibited germ line specific transcripts (Mvh, Iid4, piwil2) (p< 0.05) and markers (Mvh, Scp3). Our findings represent that culturing BMMSCs with SCCM may lead to effective differentiation of BMMSCs into germline cells and provide a treatment strategy for male infertility.


Assuntos
Animais , Masculino , Camundongos , Células de Sertoli/citologia , Células-Tronco Mesenquimais/citologia , Células de Sertoli/ultraestrutura , Testículo/citologia , Medula Óssea , Imuno-Histoquímica , Diferenciação Celular , Meios de Cultivo Condicionados , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Citometria de Fluxo
10.
Microsc Res Tech ; 80(4): 394-405, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28001323

RESUMO

Prenatal interventions may offer an immense opportunity in therapeutic protocols of malformations of cortical development (MCD). Epidermal neural crest stem cells (EPI-NCSCs) of the hair follicle bulge exhibit features of both embryonic and adult stem cells; these cells maintain their neurologic differentiation capability because of their neural crest origin. However, it is unknown if prenatal use of EPI-NCSCs could be beneficial in targeting methylazoxymethanol (MAM)-induced MCD, which further addressed in the present work. EPI-NCSCs were prenatally infused to the MAM-exposed mice. Thicknesses of various cerebral cortex areas as well as corpus callosum was measured; there were markedly decrease in MAM group (p < .001 vs. untreated), but a significant increase in EPI-NCSC group (p < .05 vs. MAM), except for corpus callosum. Real-time PCR analysis showed high expressions for absent, small, or homeotic 2-like protein, nestin, doublecortin (DCX), neuronal specific nuclei protein (NeuN), and glial fibrillary acidic protein (GFAP) in MAM group (p < .001 vs. untreated), except for G-protein-coupled C-X-C chemokine receptor type 4 (CXCR4) and CXC motif ligand 12 (CXCL12), whereas there were low expressions in EPI-NCSCs group (p < .01 vs. MAM). Immunohistochemistry of NeuN, GFAP, ionized calcium-binding adapter molecule (Iba1), and oligodendrocyte lineage transcription factor 2 (Olig2) was also revealed the same pattern as real-time PCR (p < .001 MAM vs. untreated, and p < .05 EPI-NCSCs vs. MAM). Our findings suggest prenatal use of EPI-NCSCs as a possible candidate for cell-based therapy of cortical injury through affecting neural markers and their relationship with glial.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Córtex Cerebral/fisiologia , Corpo Caloso/fisiologia , Folículo Piloso/citologia , Crista Neural/citologia , Células-Tronco Neurais/transplante , Neurogênese/fisiologia , Animais , Proteínas de Ligação ao Cálcio/análise , Células Cultivadas , Quimiocina CXCL12/análise , Embrião de Galinha , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Células Epiteliais/citologia , Feminino , Proteína Glial Fibrilar Ácida/análise , Proteínas de Homeodomínio/análise , Acetato de Metilazoximetanol/análogos & derivados , Acetato de Metilazoximetanol/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Proteínas dos Microfilamentos/análise , Proteínas Associadas aos Microtúbulos/análise , Proteínas do Tecido Nervoso/análise , Nestina/análise , Células-Tronco Neurais/citologia , Neuropeptídeos/análise , Proteínas Nucleares/análise , Gravidez , Receptores CXCR4/análise , Técnicas de Cultura de Tecidos
11.
Iran Biomed J ; 20(4): 207-16, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27130910

RESUMO

BACKGROUND: Bone marrow-derived mesenchymal stem cells (BMMSCs) transplantation has been considered as a promising milestone in liver fibrosis treatment. However, low amounts of homing are a major obstacle. We aimed to investigate the role of melatonin pretreatment in BMMSC homing into experimental liver fibrosis. METHODS: BMMSCs were obtained, grown, propagated and preconditioned with 5 µM melatonin and analyzed for multipotency and immunophenotypic features at passage three. The cells were labelled with CM-Dil and infused into the rats received the i.p. injection of carbon tetrachloride (CCl4) for five weeks to induce liver fibrosis. Animals were divided into two groups: One group received BMMSCs, whereas the other group received melatonin-pretreated BMMSCs (MT-BMMSCs). After cell injection at 72 h, animals were sacrificed, and the liver tissues were assessed for further evaluations: fibrosis using Masson's trichrome and hematoxylin and eosin staining and homing using fluorescent microscopy and flow cytometry. RESULTS: BMMSCs and MT-BMMSCs expressed a high level of CD44 but low levels of CD11b, CD45 and CD34 (for all P≤0.05) and were able to differentiate into adipocytes and Schwann cells. CCl4 induction resulted in extensive collagen deposition, tissue disruption and fatty accumulation with no obvious difference between the two groups. There was a significant increase in homing of MT-BMMSCs in both florescent microscopy (P≤0.001) and flow cytometry (P≤0.01) assays, as compared with non-treated BMMSCs. CONCLUSION: This study indicates the improved homing potential of BMMSCs in pretreatment with melatonin. Therefore, this strategy may represent an applied approach for improving the stem cell therapy of liver fibrosis.


Assuntos
Adipócitos/citologia , Adipogenia/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Cirrose Hepática/terapia , Melatonina/farmacologia , Transplante de Células-Tronco Mesenquimais/métodos , Células de Schwann/citologia , Animais , Antígenos CD34/biossíntese , Células da Medula Óssea/citologia , Antígeno CD11b/biossíntese , Tetracloreto de Carbono/toxicidade , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Receptores de Hialuronatos/biossíntese , Antígenos Comuns de Leucócito/biossíntese , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Masculino , Células-Tronco Mesenquimais/citologia , Ratos , Ratos Sprague-Dawley
12.
Biochem Cell Biol ; 93(6): 619-25, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26568364

RESUMO

An embryo has the capability to accept allo- or xeno-geneic cells, which probably makes it an ideal candidate for stem cell transplantation of various cerebral cortex abnormalities, such as cortical dysplasia. The aim of this study was to determine hair follicle-associated pluripotent (HAP) stem cells homing into various organs of mother and fetus. Cells were obtained, analyzed for immunophenotypic features, and then labelled with CM-Dil; nestin(+)HAP stem cells or media phosphate-buffered saline (PBS) were intravenously delivered on day 16 of gestation in BALB/c mice, which intraperitoneally received methylazoxymethanol (MAM) one day in advance, and homing was assessed at 24 h after cell injection. Flow cytometry and immunocytochemistry manifested positive expression of nestin in HAP stem cells. For both mother and fetus, brain, lungs, liver, and spleen were the host organs for cell implants. For the brain, the figure was considerably higher in fetus, 4.05 ± 0.5% (p ≤ 0.05 vs. mother). MAM-injected mice had a downward trend for SDF-1α and CXCR4 (p ≤ 0.05 vs. control), but HAP stem cells group showed an upward trend for CXCR4 (p ≤ 0.05 vs. MAM). We conclude the HAP stem cells show homing potential in experimental cortical dysplasia, which may permit these cells to be a target in future work on prenatal therapy of neural disorders.


Assuntos
Modelos Animais de Doenças , Terapias Fetais , Folículo Piloso/citologia , Malformações do Desenvolvimento Cortical/terapia , Troca Materno-Fetal , Nestina/metabolismo , Células-Tronco Pluripotentes/transplante , Animais , Encéfalo/embriologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Carbocianinas/química , Feminino , Citometria de Fluxo , Corantes Fluorescentes/química , Imuno-Histoquímica , Malformações do Desenvolvimento Cortical/embriologia , Malformações do Desenvolvimento Cortical/imunologia , Malformações do Desenvolvimento Cortical/patologia , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Neurônios/imunologia , Neurônios/metabolismo , Neurônios/patologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/imunologia , Células-Tronco Pluripotentes/metabolismo , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA