Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38712047

RESUMO

Mutations in the microRNA processing genes DICER1 and DROSHA drive several cancers that resemble embryonic progenitors. To understand how microRNAs regulate tumorigenesis, we ablated Drosha or Dicer1 in the developing pineal gland to emulate the pathogenesis of pineoblastoma, a brain tumor that resembles undifferentiated precursors of the pineal gland. Accordingly, these mice develop pineal tumors marked by loss of microRNAs, including the let-7/miR-98-5p family, and de-repression of microRNA target genes. Pineal tumors driven by loss of Drosha or Dicer1 mimic tumors driven by Rb1 loss, as they exhibit upregulation of S-phase genes and homeobox transcription factors that regulate pineal development. Blocking proliferation of these tumors facilitates expression of pinealocyte maturation markers, with a concomitant reduction in embryonic markers. Select embryonic markers remain elevated, however, as the microRNAs that normally repress these target genes remain absent. One such microRNA target gene is the oncofetal transcription factor Plagl2, which regulates expression of pro-growth genes, and inhibiting their signaling impairs tumor growth. Thus, we demonstrate that tumors driven by loss of microRNA processing may be therapeutically targeted by inhibiting downstream drivers of proliferation.

2.
NPJ Precis Oncol ; 7(1): 13, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707626

RESUMO

Recent studies show that rare, deleterious variants (RDVs) in certain genes are critical determinants of heritable cancer risk. To more comprehensively understand RDVs, we performed the largest-to-date germline variant calling analysis in a case-control setting for a multi-cancer association study from whole-exome sequencing data of 20,789 participants, split into discovery and validation cohorts. We confirm and extend known associations between cancer risk and germline RDVs in specific gene-sets, including DNA repair (OR = 1.50; p-value = 8.30e-07; 95% CI: 1.28-1.77), cancer predisposition (OR = 1.51; p-value = 4.58e-08; 95% CI: 1.30-1.75), and somatic cancer drivers (OR = 1.46; p-value = 4.04e-06; 95% CI: 1.24-1.72). Furthermore, personal RDV load in these gene-sets associated with increased risk, younger age of onset, increased M1 macrophages in tumor and, increased tumor mutational burden in specific cancers. Our findings can be used towards identifying high-risk individuals, who can then benefit from increased surveillance, earlier screening, and treatments that exploit their tumor characteristics, improving prognosis.

3.
Br J Haematol ; 200(4): 489-493, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349721

RESUMO

Some patients with therapy-related myeloid neoplasms (t-MN) may have unsuspected inherited cancer predisposition syndrome (CPS). We propose a set of clinical criteria to identify t-MN patients with high risk of CPS (HR-CPS). Among 225 t-MN patients with an antecedent non-myeloid malignancy, our clinical criteria identified 52 (23%) HR-CPS patients. Germline whole-exome sequencing identified pathogenic or likely pathogenic variants in 10 of 27 HR-CPS patients compared to 0 of 9 low-risk CPS patients (37% vs. 0%, p = 0.04). These simple clinical criteria identify t-MN patients most likely to benefit from genetic testing for inherited CPS.


Assuntos
Segunda Neoplasia Primária , Neoplasias , Humanos , Mutação em Linhagem Germinativa , Neoplasias/genética , Mutação , Predisposição Genética para Doença , Testes Genéticos , Segunda Neoplasia Primária/genética
4.
JCI Insight ; 8(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36480300

RESUMO

Precision medicine can significantly improve outcomes for patients with cancer, but implementation requires comprehensive characterization of tumor cells to identify therapeutically exploitable vulnerabilities. Here, we describe somatic biallelic TET2 mutations in an elderly patient with acute myeloid leukemia (AML) that was chemoresistant to anthracycline and cytarabine but acutely sensitive to 5'-azacitidine (5'-Aza) hypomethylating monotherapy, resulting in long-term morphological remission. Given the role of TET2 as a regulator of genomic methylation, we hypothesized that mutant TET2 allele dosage affects response to 5'-Aza. Using an isogenic cell model system and an orthotopic mouse xenograft, we demonstrate that biallelic TET2 mutations confer sensitivity to 5'-Aza compared with cells with monoallelic mutations. Our data argue in favor of using hypomethylating agents for chemoresistant disease or as first-line therapy in patients with biallelic TET2-mutated AML and demonstrate the importance of considering mutant allele dosage in the implementation of precision medicine for patients with cancer.


Assuntos
Dioxigenases , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Azacitidina , Leucemia Mieloide Aguda/genética , Estimativa de Kaplan-Meier , Mutação , Proteínas de Ligação a DNA/genética , Dioxigenases/genética
5.
HGG Adv ; 3(2): 100085, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35146455

RESUMO

Identifying women at high risk for developing breast cancer is potentially lifesaving. Patients with pathogenic genetic variants can embark on a program of surveillance for early detection, chemoprevention, and/or prophylactic surgery. Newly diagnosed cancer patients can also use the results of gene panel sequencing to make decisions about surgery; therefore, rapid turnaround time for results is critical. Cancer Risk B (CR-B), a test that uses flow variant assays to assess the effects of variants in the DNA double-strand break repair, was applied to two groups of subjects who underwent coincidental gene panel testing, thereby allowing an assessment of sensitivity, specificity and accuracy, and utility for annotating variants of uncertain significance (VUS). The test was compared in matched peripheral blood mononuclear cells (PBMCs) and lymphoblastoid cells (LCLs) and tested for rescue in LCLs with gene transfer. The CR-B phenotype demonstrated a bimodal distribution: CR-B+ indicative of DSB repair defects, and CR-B-, indicative of wild-type repair. When comparing matched LCLs and PBMCs and inter-day tests, CR-B yielded highly reproducible results. The CR-B- phenotype was rescued by gene transfer using wild-type cDNA expression plasmids. The CR-B- phenotype predicted VUS as benign or likely benign. CR-B could represent a rapid alternative to panel sequencing for women with cancer and identifying women at high risk for cancer and is a useful adjunct for annotating VUS.

6.
EClinicalMedicine ; 40: 101093, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34746714

RESUMO

BACKGROUND: Identification of non-human leukocyte antigen (HLA) genetic risk factors could improve survival after allogeneic blood or marrow transplant (BMT) through matching at additional loci or individualizing risk prediction. We hypothesized that non-HLA loci contributed significantly to 1-year overall survival (OS), disease related mortality (DRM) or transplant related mortality (TRM) after unrelated donor (URD)BMT. METHODS: We performed a genome-wide association study (GWAS) in 2,887 acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) and acute lymphoblastic leukemia (ALL) patients and their ≥8/8 HLA-matched URDs comprising two independent cohorts treated from 2000-2011. FINDINGS: Using meta-analyses of both cohorts, genome-wide significant associations (p < 5 × 10-8) were identified in: recipient genomes with OS at MBNL1 (rs9990017, HR = 1.4, 95% CI 1.24-1.56, p = 3.3 × 10-8) and donor-recipient genotype mismatch with OS at LINC02774 (rs10927108, HR = 1.34, 95% CI 1.21-1.48, p = 2.0 × 10-8); donor genomes with DRM at PCNX4 (rs79076914, HR = 1.7, 95% CI 1.41-2.05, p = 3.15 × 10-8), LINC01194 (rs79498125, HR = 1.86, 95% CI 1.49-2.31, p = 2.84 × 10-8), ARID5B (rs2167710, HR = 1.5, 95% CI 1.31-1.73, p = 6.9 × 10-9) and CT49 (rs32250, HR = 1.44, 95% CI1.26-1.64, p = 2.6 × 10-8); recipient genomes at PILRB with TRM (rs141591562, HR = 2.33, 95% CI 1.74-3.12, p = 1.26 × 10-8) and donor-recipient genotype mismatch between EPGN and MTHF2DL with TRM (rs75868097, HR = 2.66, 95% CI 1.92-3.58, p = 4.6 × 10-9). Results publicly available at https://fuma.ctglab.nl/browse. INTERPRETATION: These data provide the first evidence that non-HLA common genetic variation at novel loci with biochemical function significantly impacts 1-year URD-BMT survival. Our findings have implications for donor selection, could guide treatment strategies and provide individualized risk prediction after future validation and functional studies. FUNDING: This project was funded by grants from the National Institutes of Health, USA.

7.
Sci Adv ; 7(47): eabg9551, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34788103

RESUMO

The remarkable genetic heterogeneity of multiple myeloma poses a substantial challenge for proper prognostication and clinical management of patients. Here, we introduce MM-PSN, the first multiomics patient similarity network of myeloma. MM-PSN enabled accurate dissection of the genetic and molecular landscape of the disease and determined 12 distinct subgroups defined by five data types generated from genomic and transcriptomic profiling of 655 patients. MM-PSN identified patient subgroups not previously described defined by specific patterns of alterations, enriched for specific gene vulnerabilities, and associated with potential therapeutic options. Our analysis revealed that co-occurrence of t(4;14) and 1q gain identified patients at significantly higher risk of relapse and shorter survival as compared to t(4;14) as a single lesion. Furthermore, our results show that 1q gain is the most important single lesion conferring high risk of relapse and that it can improve on the current International Staging Systems (ISS and R-ISS).

8.
Front Genet ; 12: 554948, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220922

RESUMO

The role of common genetic variation in susceptibility to acute myeloid leukemia (AML), and myelodysplastic syndrome (MDS), a group of rare clonal hematologic disorders characterized by dysplastic hematopoiesis and high mortality, remains unclear. We performed AML and MDS genome-wide association studies (GWAS) in the DISCOVeRY-BMT cohorts (2,309 cases and 2,814 controls). Association analysis based on subsets (ASSET) was used to conduct a summary statistics SNP-based analysis of MDS and AML subtypes. For each AML and MDS case and control we used PrediXcan to estimate the component of gene expression determined by their genetic profile and correlate this imputed gene expression level with risk of developing disease in a transcriptome-wide association study (TWAS). ASSET identified an increased risk for de novo AML and MDS (OR = 1.38, 95% CI, 1.26-1.51, Pmeta = 2.8 × 10-12) in patients carrying the T allele at s12203592 in Interferon Regulatory Factor 4 (IRF4), a transcription factor which regulates myeloid and lymphoid hematopoietic differentiation. Our TWAS analyses showed increased IRF4 gene expression is associated with increased risk of de novo AML and MDS (OR = 3.90, 95% CI, 2.36-6.44, Pmeta = 1.0 × 10-7). The identification of IRF4 by both GWAS and TWAS contributes valuable insight on the role of genetic variation in AML and MDS susceptibility.

9.
Cancer Manag Res ; 13: 4351-4357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34103990

RESUMO

The canonical model for hereditary cancer predisposition is a cancer predisposition gene (CPG) that drives either one or both of two fundamental hallmarks of cancer, defective genomic integrity and deregulated cell proliferation, ultimately resulting in the accumulation of mutations within cells. Thus, the genes most commonly associated with cancer-predisposing genetic syndromes are tumor suppressor genes that regulate DNA repair (eg, BRCA1, BRCA2, MMR genes) and/or cell cycle (eg, APC, RB1). In recent years, however, the spectrum of high-penetrance CPGs has expanded considerably to include genes in non-canonical pathways such as oncogenic signaling, metabolism, and protein translation. We propose here that, given the variety of pathways that may ultimately affect genome integrity and cell proliferation, the model of cancer genetic predisposition needs to be expanded to account for diverse mechanisms. This synthesis calls for modeling and multi-omic studies applying novel experimental and computational approaches to understand cancer genetic predisposition.

10.
Cells ; 10(2)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671849

RESUMO

Bilirubin, an endogenous antioxidant, may play a protective role in cancer development. We applied two-sample Mendelian randomization to investigate whether genetically raised bilirubin levels are causally associated with the risk of ten cancers (pancreas, kidney, endometrium, ovary, breast, prostate, lung, Hodgkin's lymphoma, melanoma, and neuroblastoma). The number of cases and their matched controls of European descent ranged from 122,977 and 105,974 for breast cancer to 1200 and 6417 for Hodgkin's lymphoma, respectively. A total of 115 single-nucleotide polymorphisms (SNPs) associated (p < 5 × 10-8) with circulating total bilirubin, extracted from a genome-wide association study in the UK Biobank, were used as instrumental variables. One SNP (rs6431625) in the promoter region of the uridine-diphosphoglucuronate glucuronosyltransferase1A1 (UGT1A1) gene explained 16.9% and the remaining 114 SNPs (non-UGT1A1 SNPs) explained 3.1% of phenotypic variance in circulating bilirubin levels. A one-standarddeviation increment in circulating bilirubin (≈ 4.4 µmol/L), predicted by non-UGT1A1 SNPs, was inversely associated with risk of squamous cell lung cancer and Hodgkin's lymphoma (odds ratio (OR) 0.85, 95% confidence interval (CI) 0.73-0.99, P 0.04 and OR 0.64, 95% CI 0.42-0.99, p 0.04, respectively), which was confirmed after removing potential pleiotropic SNPs. In contrast, a positive association was observed with the risk of breast cancer after removing potential pleiotropic SNPs (OR 1.12, 95% CI 1.04-1.20, p 0.002). There was little evidence for robust associations with the other seven cancers investigated. Genetically raised bilirubin levels were inversely associated with risk of squamous cell lung cancer as well as Hodgkin's lymphoma and positively associated with risk of breast cancer. Further studies are required to investigate the utility of bilirubin as a low-cost clinical marker to improve risk prediction for certain cancers.


Assuntos
Bilirrubina/genética , Neoplasias da Mama/genética , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único/genética , Biomarcadores/análise , Neoplasias da Mama/tratamento farmacológico , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana/métodos , Fatores de Risco
11.
Cancer Prev Res (Phila) ; 14(4): 441-454, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33419763

RESUMO

We investigated a Spanish and Catalan family in which multiple cancer types tracked across three generations, but for which no genetic etiology had been identified. Whole-exome sequencing of germline DNA from multiple affected family members was performed to identify candidate variants to explain this occurrence of familial cancer. We discovered in all cancer-affected family members a single rare heterozygous germline variant (I654V, rs1801201) in ERBB2/HER2, which is located in a transmembrane glycine zipper motif critical for ERBB2-mediated signaling and in complete linkage disequilibrium (D' = 1) with a common polymorphism (I655V, rs1136201) previously reported in some populations as associated with cancer risk. Because multiple cancer types occurred in this family, we tested both the I654V and the I655V variants for association with cancer across multiple tumor types in 6,371 cases of Northern European ancestry drawn from The Cancer Genome Atlas and 6,647 controls, and found that the rare variant (I654V) was significantly associated with an increased risk for cancer (OR = 1.40; P = 0.021; 95% confidence interval (CI), 1.05-1.89). Functional assays performed in HEK 293T cells revealed that both the I655V single mutant (SM) and the I654V;I655V double mutant (DM) stabilized ERBB2 protein and activated ERBB2 signaling, with the DM activating ERBB2 significantly more than the SM alone. Thus, our results suggest a model whereby heritable genetic variation in the transmembrane domain activating ERBB2 signaling is associated with both sporadic and familial cancer risk, with increased ERBB2 stabilization and activation associated with increased cancer risk. PREVENTION RELEVANCE: By performing whole-exome sequencing on germline DNA from multiple cancer-affected individuals belonging to a family in which multiple cancer types track across three generations, we identified and then characterized functional common and rare variation in ERBB2 associated with both sporadic and familial cancer. Our results suggest that heritable variation activating ERBB2 signaling is associated with risk for multiple cancer types, with increases in signaling correlated with increases in risk, and modified by ancestry or family history.


Assuntos
Biomarcadores Tumorais/genética , Exoma , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Síndromes Neoplásicas Hereditárias/patologia , Receptor ErbB-2/genética , Adolescente , Adulto , Idoso , Criança , Análise Mutacional de DNA , Feminino , Testes Genéticos , Humanos , Masculino , Síndromes Neoplásicas Hereditárias/genética , Linhagem , Sequenciamento do Exoma , Adulto Jovem
12.
Pediatr Blood Cancer ; 68(3): e28843, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33338306

RESUMO

PURPOSE: Pediatric oncology patients undergoing active chemotherapy are suspected to be at a high risk for severe disease secondary to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection; however, data to support this are lacking. We aim to describe the characteristics of coronavirus disease 2019 (COVID-19) in this population and also its impact on pediatric cancer care in the New York region during the peak of the pandemic. PATIENTS AND METHODS: This multicenter, retrospective study included 13 institutions. Clinical and laboratory information on 98 patients ≤21 years of age receiving active anticancer therapy, who tested positive for SARS-CoV-2 by nasopharyngeal swab polymerase chain reaction (PCR), was collected. RESULTS: Of the 578 pediatric oncology patients tested for COVID-19, 98 were positive, of whom 73 were symptomatic. Most experienced mild disease, 28 required inpatient management, 25 needed oxygen support, and seven required mechanical ventilation. There is a slightly higher risk of severe disease in males and obese patients, though not statistically significant. Persistent lymphopenia was noted in severe cases. Delays in cancer therapy occurred in 67% of SARS-CoV-2-positive patients. Of four deaths, none were solely attributable to COVID-19. The impact of the pandemic on pediatric oncology care was significant, with 54% of institutions reporting delays in chemotherapy, 46% delays in surgery, and 30% delays in transplant. CONCLUSION: In this large multi-institutional cohort, we observed that mortality and morbidity from COVID-19 amongst pediatric oncology patients were low overall, but higher than reported in general pediatrics. Certain subgroups might be at higher risk of severe disease. Delays in cancer care due to SARS-CoV-2 remain a concern.


Assuntos
Antineoplásicos/uso terapêutico , COVID-19/epidemiologia , Neoplasias/mortalidade , Neoplasias/terapia , Índice de Gravidade de Doença , Adolescente , Antineoplásicos/efeitos adversos , COVID-19/patologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2
13.
J Thorac Oncol ; 15(12): 1871-1879, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866655

RESUMO

INTRODUCTION: Lung cancer is the leading cause of cancer deaths in the world, and lung adenocarcinoma (LUAD) is its most prevalent subtype. Symptoms are often found in advanced disease in which treatment options are limited. Identifying genetic risk factors will enable better identification of high-risk individuals. METHODS: To identify LUAD risk genes, we performed a case-control association study for gene-level burden of rare, deleterious variants (RDVs) in germline whole-exome sequencing data of 1083 patients with LUAD and 7650 controls, split into discovery and validation cohorts. Of these, we performed whole-exome sequencing on 97 patients and acquired the rest from multiple public databases. We annotated all rare variants for pathogenicity conservatively, using the guidelines of the American College of Medical Genetics and Genomics and ClinVar curation, and investigated gene-level RDV burden using penalized logistic regression. All statistical tests were two-sided. RESULTS: We discovered and replicated the finding that the burden of germline ATM RDVs was significantly higher in patients with LUAD versus controls (combined cohort OR = 4.6; p = 1.7e-04; 95% confidence interval = 2.2-9.5; 1.21% of cases; 0.24% of controls). Germline ATM RDVs were also enriched in an independent clinical cohort of 1594 patients from the MSK-IMPACT study (0.63%). In addition, we observed that an Ashkenazi Jewish (AJ) founder ATM variant, rs56009889, was statistically significantly more frequent in AJ cases versus AJ controls in our cohort (combined AJ cohort OR = 2.7, p = 6.9e-03, 95% confidence interval = 1.3-5.3). CONCLUSIONS: Our results indicate that ATM is a moderate-penetrance LUAD risk gene and that LUAD may be a part of the ATM-related cancer syndrome spectrum. Individuals with ATM RDVs are at an elevated LUAD risk and can benefit from increased surveillance (particularly computed tomography scanning), early detection, and chemoprevention programs, improving prognosis.


Assuntos
Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Genômica , Humanos , Neoplasias Pulmonares/genética , Prognóstico , Sequenciamento do Exoma
14.
Cancer Manag Res ; 11: 7525-7536, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616176

RESUMO

The decreasing cost of and increasing capacity of DNA sequencing has led to vastly increased opportunities for population-level genomic studies to discover novel genomic alterations associated with both Mendelian and complex phenotypes. To translate genomic findings clinically, a number of health care institutions have worked collaboratively or individually to initiate precision medicine programs. These precision medicine programs involve designing patient enrollment systems, tracking electronic health records, building biobank repositories, and returning results with actionable matched therapies. As cancer is a paradigm for genetic diseases and new therapies are increasingly tailored to attack genetic susceptibilities in tumors, these precision medicine programs are largely driven by the urgent need to perform genetic profiling on cancer patients in real time. Here, we review the current landscape of precision oncology and highlight challenges to be overcome and examples of benefits to patients. Furthermore, we make suggestions to optimize future precision oncology programs based upon the lessons learned from these "first generation" early adopters.

15.
Genet Epidemiol ; 43(7): 844-863, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31407831

RESUMO

Epidemiologic studies show an increased risk of non-Hodgkin lymphoma (NHL) in patients with autoimmune disease (AD), due to a combination of shared environmental factors and/or genetic factors, or a causative cascade: chronic inflammation/antigen-stimulation in one disease leads to another. Here we assess shared genetic risk in genome-wide-association-studies (GWAS). Secondary analysis of GWAS of NHL subtypes (chronic lymphocytic leukemia, diffuse large B-cell lymphoma, follicular lymphoma, and marginal zone lymphoma) and ADs (rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis). Shared genetic risk was assessed by (a) description of regional genetic of overlap, (b) polygenic risk score (PRS), (c)"diseasome", (d)meta-analysis. Descriptive analysis revealed few shared genetic factors between each AD and each NHL subtype. The PRS of ADs were not increased in NHL patients (nor vice versa). In the diseasome, NHLs shared more genetic etiology with ADs than solid cancers (p = .0041). A meta-analysis (combing AD with NHL) implicated genes of apoptosis and telomere length. This GWAS-based analysis four NHL subtypes and three ADs revealed few weakly-associated shared loci, explaining little total risk. This suggests common genetic variation, as assessed by GWAS in these sample sizes, may not be the primary explanation for the link between these ADs and NHLs.


Assuntos
Doenças Autoimunes/genética , Predisposição Genética para Doença , Linfoma não Hodgkin/genética , Alelos , Feminino , Antígenos HLA/genética , Humanos , Masculino , Pessoa de Meia-Idade , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
17.
Blood ; 131(22): 2490-2499, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29610366

RESUMO

Although survival outcomes have significantly improved, up to 40% of patients die within 1 year of HLA-matched unrelated-donor blood and marrow transplantation (BMT). To identify non-HLA genetic contributors to mortality after BMT, we performed the first exome-wide association study in the DISCOVeRY-BMT cohorts using the Illumina HumanExome BeadChip. This study includes 2473 patients with acute myeloid leukemia, acute lymphoblastic leukemia, or myelodysplastic syndrome and 2221 10/10 HLA-matched donors treated from 2000 to 2011. Single-variant and gene-level analyses were performed on overall survival (OS), transplantation-related mortality (TRM), and disease-related mortality (DRM). Genotype mismatches between recipients and donors in a rare nonsynonymous variant of testis-expressed gene TEX38 significantly increased risk of TRM, which was more dramatic when either the recipient or donor was female. Using the SKAT-O test to evaluate gene-level effects, variant genotypes of OR51D1 in recipients were significantly associated with OS and TRM. In donors, 4 (ALPP, EMID1, SLC44A5, LRP1), 1 (HHAT), and 2 genes (LYZL4, NT5E) were significantly associated with OS, TRM, and DRM, respectively. Inspection of NT5E crystal structures showed 4 of the associated variants affected the enzyme structure and likely decreased the catalytic efficiency of the enzyme. Further confirmation of these findings and additional functional studies may provide individualized risk prediction and prognosis, as well as alternative donor selection strategies.


Assuntos
Transplante de Medula Óssea/mortalidade , Exoma , Leucemia Mieloide Aguda/terapia , Síndromes Mielodisplásicas/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , 5'-Nucleotidase/genética , Adolescente , Adulto , Transplante de Medula Óssea/métodos , Feminino , Proteínas Ligadas por GPI/genética , Genótipo , Teste de Histocompatibilidade , Humanos , Leucemia Mieloide Aguda/genética , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Síndromes Mielodisplásicas/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transplante Homólogo/métodos , Transplante Homólogo/mortalidade , Resultado do Tratamento , Doadores não Relacionados , Adulto Jovem
18.
J Natl Cancer Inst ; 109(10)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29117357

RESUMO

To investigate genetic predispositions for MYCN-amplified neuroblastoma, we performed a meta-analysis of three genome-wide association studies totaling 615 MYCN-amplified high-risk neuroblastoma cases and 1869 MYCN-nonamplified non-high-risk neuroblastoma cases as controls using a fixed-effects model with inverse variance weighting. All statistical tests were two-sided. We identified a novel locus at 3p21.31 indexed by the single nucleotide polymorphism (SNP) rs80059929 (odds ratio [OR] = 2.95, 95% confidence interval [CI] = 2.17 to 4.02, Pmeta = 6.47 × 10-12) associated with MYCN-amplified neuroblastoma, which was replicated in 127 MYCN-amplified cases and 254 non-high-risk controls (OR = 2.30, 95% CI = 1.12 to 4.69, Preplication = .02). To confirm this signal is exclusive to MYCN-amplified tumors, we performed a second meta-analysis comparing 728 MYCN-nonamplified high-risk patients to identical controls. rs80059929 was not statistically significant in MYCN-nonamplified high-risk patients (OR = 1.24, 95% CI = 0.90 to 1.71, Pmeta = .19). SNP rs80059929 is within intron 16 in the KIF15 gene. Additionally, the previously reported LMO1 neuroblastoma risk locus was statistically significant only in patients with MYCN-nonamplified high-risk tumors (OR = 0.63, 95% CI = 0.53 to 0.75, Pmeta = 1.51 × 10-8; Pmeta = .95). Our results indicate that common genetic variation predisposes to different neuroblastoma genotypes, including the likelihood of somatic MYCN-amplification.


Assuntos
Amplificação de Genes , Predisposição Genética para Doença , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Estudos de Casos e Controles , Regulação Neoplásica da Expressão Gênica , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único
19.
J Natl Cancer Inst ; 109(11)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29059430

RESUMO

Background: Childhood cancer survivors treated with chest-directed radiotherapy have substantially elevated risk for developing breast cancer. Although genetic susceptibility to breast cancer in the general population is well studied, large-scale evaluation of breast cancer susceptibility after chest-directed radiotherapy for childhood cancer is lacking. Methods: We conducted a genome-wide association study of breast cancer in female survivors of childhood cancer, pooling two cohorts with detailed treatment data and systematic, long-term follow-up: the Childhood Cancer Survivor Study and St. Jude Lifetime Cohort. The study population comprised 207 survivors who developed breast cancer and 2774 who had not developed any subsequent neoplasm as of last follow-up. Genotyping and subsequent imputation yielded 16 958 466 high-quality variants for analysis. We tested associations in the overall population and in subgroups stratified by receipt of lower than 10 and 10 or higher gray breast radiation exposure. We report P values and pooled per-allele risk estimates from Cox proportional hazards regression models. All statistical tests were two-sided. Results: Among survivors who received 10 or higher gray breast radiation exposure, a locus on 1q41 was associated with subsequent breast cancer risk (rs4342822, nearest gene PROX1 , risk allele frequency in control subjects [RAF controls ] = 0.46, hazard ratio = 1.92, 95% confidence interval = 1.49 to 2.44, P = 7.09 × 10 -9 ). Two rare variants also showed potentially promising associations (breast radiation ≥10 gray: rs74949440, 11q23, TAGLN , RAF controls = 0.02, P = 5.84 × 10 -8 ; <10 gray: rs17020562, 1q32.3, RPS6KC1 , RAF controls = 0.0005, P = 6.68 × 10 -8 ). Associations were restricted to these dose subgroups, with consistent findings in the two survivor cohorts. Conclusions: Our study provides strong evidence that germline genetics outside high-risk syndromes could modify the effect of radiation exposure on breast cancer risk after childhood cancer.


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Proteínas de Homeodomínio/genética , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética , Neoplasias Induzidas por Radiação/genética , Segunda Neoplasia Primária/genética , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Mama/efeitos da radiação , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Doença de Hodgkin/radioterapia , Humanos , Lactente , Leucemia/radioterapia , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Dosagem Radioterapêutica , Estudos Retrospectivos , Sobreviventes , Adulto Jovem , Quinases raf/genética
20.
Cancer Manag Res ; 9: 397-410, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28979163

RESUMO

Gene signatures have been associated with outcome in pediatric acute lymphoblastic leukemia (ALL) and other malignancies. However, determining the molecular drivers of these expression changes remains challenging. In ALL blasts, the p53 tumor suppressor is the primary regulator of the apoptotic response to genotoxic chemotherapy, which is predictive of outcome. Consequently, we hypothesized that the normal p53-regulated apoptotic response to DNA damage would be altered in ALL and that this alteration would influence drug response and treatment outcome. To test this, we first used global expression profiling in related human B-lineage lymphoblastoid cell lines with either wild type or mutant TP53 to characterize the normal p53-mediated transcriptional response to ionizing radiation (IR) and identified 747 p53-regulated apoptotic target genes. We then sorted these genes into six temporal expression clusters (TECs) based upon differences over time in their IR-induced p53-regulated gene expression patterns, and found that one cluster (TEC1) was associated with multidrug resistance in leukemic blasts in one cohort of children with ALL and was an independent predictor of survival in two others. Therefore, by investigating p53-mediated apoptosis in vitro, we identified a gene signature significantly associated with drug resistance and treatment outcome in ALL. These results suggest that intersecting pathway-derived and clinically derived expression data may be a powerful method to discover driver gene signatures with functional and clinical implications in pediatric ALL and perhaps other cancers as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA