Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
NAR Cancer ; 6(1): zcad060, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38204924

RESUMO

Cancer vaccines have been increasingly studied and developed to prevent or treat various types of cancers. To systematically survey and analyze different reported cancer vaccines, we developed CanVaxKB (https://violinet.org/canvaxkb), the first web-based cancer vaccine knowledgebase that compiles over 670 therapeutic or preventive cancer vaccines that have been experimentally verified to be effective at various stages. Vaccine construction and host response data are also included. These cancer vaccines are developed against various cancer types such as melanoma, hematological cancer, and prostate cancer. CanVaxKB has stored 263 genes or proteins that serve as cancer vaccine antigen genes, which we have collectively termed 'canvaxgens'. Top three mostly used canvaxgens are PMEL, MLANA and CTAG1B, often targeting multiple cancer types. A total of 193 canvaxgens are also reported in cancer-related ONGene, Network of Cancer Genes and/or Sanger Cancer Gene Consensus databases. Enriched functional annotations and clusters of canvaxgens were identified and analyzed. User-friendly web interfaces are searchable for querying and comparing cancer vaccines. CanVaxKB cancer vaccines are also semantically represented by the community-based Vaccine Ontology to support data exchange. Overall, CanVaxKB is a timely and vital cancer vaccine source that facilitates efficient collection and analysis, further helping researchers and physicians to better understand cancer mechanisms.

2.
Nat Rev Nephrol ; 16(11): 686-696, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32939051

RESUMO

An important need exists to better understand and stratify kidney disease according to its underlying pathophysiology in order to develop more precise and effective therapeutic agents. National collaborative efforts such as the Kidney Precision Medicine Project are working towards this goal through the collection and integration of large, disparate clinical, biological and imaging data from patients with kidney disease. Ontologies are powerful tools that facilitate these efforts by enabling researchers to organize and make sense of different data elements and the relationships between them. Ontologies are critical to support the types of big data analysis necessary for kidney precision medicine, where heterogeneous clinical, imaging and biopsy data from diverse sources must be combined to define a patient's phenotype. The development of two new ontologies - the Kidney Tissue Atlas Ontology and the Ontology of Precision Medicine and Investigation - will support the creation of the Kidney Tissue Atlas, which aims to provide a comprehensive molecular, cellular and anatomical map of the kidney. These ontologies will improve the annotation of kidney-relevant data, and eventually lead to new definitions of kidney disease in support of precision medicine.


Assuntos
Atlas como Assunto , Ontologias Biológicas , Nefropatias/classificação , Medicina de Precisão , Big Data , Humanos , Fenótipo
3.
BMC Bioinformatics ; 20(Suppl 7): 199, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074377

RESUMO

BACKGROUND: Drug adverse events (AEs), or called adverse drug events (ADEs), are ranked one of the leading causes of mortality. The Ontology of Adverse Events (OAE) has been widely used for adverse event AE representation, standardization, and analysis. OAE-based ADE-specific ontologies, including ODNAE for drug-associated neuropathy-inducing AEs and OCVDAE for cardiovascular drug AEs, have also been developed and used. However, these ADE-specific ontologies do not consider the effects of other factors (e.g., age and drug-treated disease) on the outcomes of ADEs. With more ontological studies of ADEs, it is also critical to develop a general purpose ontology for representing ADEs for various types of drugs. RESULTS: Our survey of FDA drug package insert documents and other resources for 224 neuropathy-inducing drugs discovered that many drugs (e.g., sirolimus and linezolid) cause different AEs given patients' age or the diseases treated by the drugs. To logically represent the complex relations among drug, drug ingredient and mechanism of action, AE, age, disease, and other related factors, an ontology design pattern was developed and applied to generate a community-driven open-source Ontology of Drug Adverse Events (ODAE). The ODAE development follows the OBO Foundry ontology development principles (e.g., openness and collaboration). Built on a generalizable ODAE design pattern and extending the OAE and NDF-RT ontology, ODAE has represented various AEs associated with the over 200 neuropathy-inducing drugs given different age and disease conditions. ODAE is now deposited in the Ontobee for browsing and queries. As a demonstration of usage, a SPARQL query of the ODAE knowledge base was developed to identify all the drugs having the mechanisms of ion channel interactions, the diseases treated with the drugs, and AEs after the treatment in adult patients. AE-specific drug class effects were also explored using ODAE and SPARQL. CONCLUSION: ODAE provides a general representation of ADEs given different conditions and can be used for querying scientific questions. ODAE is also a robust knowledge base and platform for semantic and logic representation and study of ADEs of more drugs in the future.


Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos/estatística & dados numéricos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Linezolida/efeitos adversos , Doenças do Sistema Nervoso/induzido quimicamente , Preparações Farmacêuticas/administração & dosagem , Sirolimo/efeitos adversos , Software , Adulto , Fatores Etários , Antibacterianos/efeitos adversos , Antibióticos Antineoplásicos/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Humanos , Preparações Farmacêuticas/análise
4.
AMIA Annu Symp Proc ; 2017: 1793-1801, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29854250

RESUMO

A critical issue in the usage of cancer drugs is its association with various adverse events (AEs) in some, but not all, patients. The National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events (CTCAE) is a controlled terminology for AE classification and analysis in cancer clinical trials. The Ontology of Adverse Events (OAE) is a community-based ontology in the domain of AEs. In this study, OAE was first updated by including AE severity grading and OAE-CTCAE mapping. An OAE subset containing CTCAE-related terms and their associated OAE terms was generated to facilitate term usage. A use case study based on a published cancer drug clinical trial demonstrates that OAE provides better hierarchical representation, includes semantic relations, and supports automated reasoning. Demonstrated with a single patient analysis, the OAE framework supports precision informatics for representing AEs and related genetic and clinical conditions in individual patients treated with cancer drugs.


Assuntos
Antineoplásicos/efeitos adversos , Ontologias Biológicas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/classificação , Neoplasias/tratamento farmacológico , Farmacovigilância , Antineoplásicos/uso terapêutico , Humanos , Informática Médica , Semântica , Índice de Gravidade de Doença
5.
BMC Bioinformatics ; 18(Suppl 17): 556, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29322930

RESUMO

BACKGROUND: Aiming to understand cellular responses to different perturbations, the NIH Common Fund Library of Integrated Network-based Cellular Signatures (LINCS) program involves many institutes and laboratories working on over a thousand cell lines. The community-based Cell Line Ontology (CLO) is selected as the default ontology for LINCS cell line representation and integration. RESULTS: CLO has consistently represented all 1097 LINCS cell lines and included information extracted from the LINCS Data Portal and ChEMBL. Using MCF 10A cell line cells as an example, we demonstrated how to ontologically model LINCS cellular signatures such as their non-tumorigenic epithelial cell type, three-dimensional growth, latrunculin-A-induced actin depolymerization and apoptosis, and cell line transfection. A CLO subset view of LINCS cell lines, named LINCS-CLOview, was generated to support systematic LINCS cell line analysis and queries. In summary, LINCS cell lines are currently associated with 43 cell types, 131 tissues and organs, and 121 cancer types. The LINCS-CLO view information can be queried using SPARQL scripts. CONCLUSIONS: CLO was used to support ontological representation, integration, and analysis of over a thousand LINCS cell line cells and their cellular responses.


Assuntos
Mama/metabolismo , Biologia Computacional/métodos , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Neoplasias/genética , Apoptose/efeitos dos fármacos , Mama/citologia , Mama/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Humanos , Macrolídeos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Tiazolidinas/farmacologia
6.
J Comput Biol ; 22(4): 266-88, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25844667

RESUMO

A key aim of systems biology is the reconstruction of molecular networks. We do not yet, however, have networks that integrate information from all datasets available for a particular clinical condition. This is in part due to the limited scalability, in terms of required computational time and power, of existing algorithms. Network reconstruction methods should also be scalable in the sense of allowing scientists from different backgrounds to efficiently integrate additional data. We present a network model of acute myeloid leukemia (AML). In the current version (AML 2.1), we have used gene expression data (both microarray and RNA-seq) from 5 different studies comprising a total of 771 AML samples and a protein-protein interactions dataset. Our scalable network reconstruction method is in part based on the well-known property of gene expression correlation among interacting molecules. The difficulty of distinguishing between direct and indirect interactions is addressed by optimizing the coefficient of variation of gene expression, using a validated gold-standard dataset of direct interactions. Computational time is much reduced compared to other network reconstruction methods. A key feature is the study of the reproducibility of interactions found in independent clinical datasets. An analysis of the most significant clusters, and of the network properties (intraset efficiency, degree, betweenness centrality, and PageRank) of common AML mutations demonstrated the biological significance of the network. A statistical analysis of the response of blast cells from 11 AML patients to a library of kinase inhibitors provided an experimental validation of the network. A combination of network and experimental data identified CDK1, CDK2, CDK4, and CDK6 and other kinases as potential therapeutic targets in AML.


Assuntos
Redes Reguladoras de Genes , Leucemia Mieloide Aguda/genética , Mapas de Interação de Proteínas , Antineoplásicos/farmacologia , Regulação Leucêmica da Expressão Gênica , Ontologia Genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Terapia de Alvo Molecular , Mutação , Inibidores de Proteínas Quinases/farmacologia , Reprodutibilidade dos Testes , Transcriptoma
7.
PLoS One ; 9(7): e102221, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25029499

RESUMO

The BCR-ABL translocation is found in chronic myeloid leukemia (CML) and in Ph+ acute lymphoblastic leukemia (ALL) patients. Although imatinib and its analogues have been used as front-line therapy to target this mutation and control the disease for over a decade, resistance to the therapy is still observed and most patients are not cured but need to continue the therapy indefinitely. It is therefore of great importance to find new therapies, possibly as drug combinations, which can overcome drug resistance. In this study, we identified eleven candidate anti-leukemic drugs that might be combined with imatinib, using three approaches: a kinase inhibitor library screen, a gene expression correlation analysis, and literature analysis. We then used an experimental search algorithm to efficiently explore the large space of possible drug and dose combinations and identified drug combinations that selectively kill a BCR-ABL+ leukemic cell line (K562) over a normal fibroblast cell line (IMR-90). Only six iterations of the algorithm were needed to identify very selective drug combinations. The efficacy of the top forty-nine combinations was further confirmed using Ph+ and Ph- ALL patient cells, including imatinib-resistant cells. Collectively, the drug combinations and methods we describe might be a first step towards more effective interventions for leukemia patients, especially those with the BCR-ABL translocation.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Benzamidas/administração & dosagem , Benzamidas/farmacologia , Descoberta de Drogas , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Algoritmos , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Piperazinas/uso terapêutico , Pirimidinas/uso terapêutico
8.
BMC Syst Biol ; 8: 74, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24961498

RESUMO

BACKGROUND: Many kinase inhibitors have been approved as cancer therapies. Recently, libraries of kinase inhibitors have been extensively profiled, thus providing a map of the strength of action of each compound on a large number of its targets. These profiled libraries define drug-kinase networks that can predict the effectiveness of untested drugs and elucidate the roles of specific kinases in different cellular systems. Predictions of drug effectiveness based on a comprehensive network model of cellular signalling are difficult, due to our partial knowledge of the complex biological processes downstream of the targeted kinases. RESULTS: We have developed the Kinase Inhibitors Elastic Net (KIEN) method, which integrates information contained in drug-kinase networks with in vitro screening. The method uses the in vitro cell response of single drugs and drug pair combinations as a training set to build linear and nonlinear regression models. Besides predicting the effectiveness of untested drugs, the KIEN method identifies sets of kinases that are statistically associated to drug sensitivity in a given cell line. We compared different versions of the method, which is based on a regression technique known as elastic net. Data from two-drug combinations led to predictive models, and we found that predictivity can be improved by applying logarithmic transformation to the data. The method was applied to the A549 lung cancer cell line, and we identified specific kinases known to have an important role in this type of cancer (TGFBR2, EGFR, PHKG1 and CDK4). A pathway enrichment analysis of the set of kinases identified by the method showed that axon guidance, activation of Rac, and semaphorin interactions pathways are associated to a selective response to therapeutic intervention in this cell line. CONCLUSIONS: We have proposed an integrated experimental and computational methodology, called KIEN, that identifies the role of specific kinases in the drug response of a given cell line. The method will facilitate the design of new kinase inhibitors and the development of therapeutic interventions with combinations of many inhibitors.


Assuntos
Biologia Computacional/métodos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Lineares , Dinâmica não Linear , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA