Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948762

RESUMO

Fully capturing cellular state requires examining genomic, epigenomic, transcriptomic, proteomic, and other assays for a biological sample and comprehensive computational modeling to reason with the complex and sometimes conflicting measurements. Modeling these so-called multi-omic data is especially beneficial in disease analysis, where observations across omic data types may reveal unexpected patient groupings and inform clinical outcomes and treatments. We present Multi-omic Pathway Analysis of Cancer (MPAC), a computational framework that interprets multi-omic data through prior knowledge from biological pathways. MPAC uses network relationships encoded in pathways using a factor graph to infer consensus activity levels for proteins and associated pathway entities from multi-omic data, runs permutation testing to eliminate spurious activity predictions, and groups biological samples by pathway activities to prioritize proteins with potential clinical relevance. Using DNA copy number alteration and RNA-seq data from head and neck squamous cell carcinoma patients from The Cancer Genome Atlas as an example, we demonstrate that MPAC predicts a patient subgroup related to immune responses not identified by analysis with either input omic data type alone. Key proteins identified via this subgroup have pathway activities related to clinical outcome as well as immune cell compositions. Our MPAC R package, available at https://bioconductor.org/packages/MPAC, enables similar multi-omic analyses on new datasets.

2.
Melanoma Res ; 34(4): 307-318, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38768442

RESUMO

Canine malignant melanoma provides a clinically relevant, large animal parallel patient population to study the GD2-reactive hu14.18-IL-2 immunocytokine as it is similar to human melanoma and expresses GD2. The objectives of this study were to evaluate safety, radiation fractionation, and identify informative biomarkers of an in-situ tumor vaccine involving local radiation therapy plus intratumoral-immunocytokine in melanoma tumor-bearing dogs. Twelve dogs (six dogs/arm) with locally advanced or metastatic melanoma were randomized to receive a single 8 Gy fraction (arm A) or three 8 Gy fractions over 1 week (arm B) to the primary site and regional lymph nodes (when clinically involved) with the single or last fraction 5 days before intratumoral-immunocytokine at 12 mg/m 2 on 3 consecutive days. Serial tumor biopsies were obtained. All 12 dogs completed protocol treatment, and none experienced significant or unexpected adverse events. Evidence of antitumor activity includes one dog with a complete response at day 60, one dog with a partial response at day 60, and four dogs with mixed responses. Histology of serial biopsies shows a variably timed increase in intratumoral lymphocytic inflammation in some dogs. Canine NanoString analyses of serial biopsies identified changes in gene signatures of innate and adaptive cell types versus baseline. There were no significant differences in NanoString results between arm A and arm B. We conclude that intratumoral-immunocytokine in combination with local radiation therapy in canine melanoma is well tolerated and has antitumor activity with the potential to inform clinical development in melanoma patients.


Assuntos
Doenças do Cão , Interleucina-2 , Melanoma , Cães , Animais , Melanoma/radioterapia , Melanoma/imunologia , Melanoma/patologia , Doenças do Cão/radioterapia , Doenças do Cão/imunologia , Neoplasias Cutâneas/radioterapia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Feminino , Masculino
3.
Stem Cell Res Ther ; 15(1): 72, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475968

RESUMO

BACKGROUND: Hematopoietic acute radiation syndrome (H-ARS) occurring after exposure to ionizing radiation damages bone marrow causing cytopenias, increasing susceptibility to infections and death. We and others have shown that cellular therapies like human mesenchymal stromal cells (MSCs), or monocytes/macrophages educated ex-vivo with extracellular vesicles (EVs) from MSCs were effective in a lethal H-ARS mouse model. However, given the complexity of generating cellular therapies and the potential risks of using allogeneic products, development of an "off-the-shelf" cell-free alternative like EVs may have utility in conditions like H-ARS that require rapid deployment of available therapeutics. The purpose of this study was to determine the feasibility of producing MSC-derived EVs at large scale using a bioreactor and assess critical quality control attributes like identity, sterility, and potency in educating monocytes and promoting survival in a lethal H-ARS mouse model. METHODS: EVs were isolated by ultracentrifugation from unprimed and lipopolysaccharide (LPS)-primed MSCs grown at large scale using a hollow fiber bioreactor and compared to a small scale system using flasks. The physical identity of EVs included a time course assessment of particle diameter, yield, protein content and surface marker profile by flow-cytometry. Comparison of the RNA cargo in EVs was determined by RNA-seq. Capacity of EVs to generate exosome educated monocytes (EEMos) was determined by qPCR and flow cytometry, and potency was assessed in vivo using a lethal ARS model with NSG mice. RESULTS: Physical identity of EVs at both scales were similar but yields by volume were up to 38-fold more using a large-scale bioreactor system. RNA-seq indicated that flask EVs showed upregulated let-7 family and miR-143 micro-RNAs. EEMos educated with LPS-EVs at each scale were similar, showing increased gene expression of IL-6, IDO, FGF-2, IL-7, IL-10, and IL-15 and immunophenotyping consistent with a PD-L1 high, CD16 low, and CD86 low cell surface expression. Treatment with LPS-EVs manufactured at both scales were effective in the ARS model, improving survival and clinical scores through improved hematopoietic recovery. EVs from unprimed MSCs were less effective than LPS-EVs, with flask EVs providing some improved survival while bioreactor EVs provide no survival benefit. CONCLUSIONS: LPS-EVs as an effective treatment for H-ARS can be produced using a scale-up development manufacturing process, representing an attractive off-the-shelf, cell-free therapy.


Assuntos
Síndrome Aguda da Radiação , Exossomos , Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Lipopolissacarídeos , Vesículas Extracelulares/metabolismo , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo
4.
Vet Immunol Immunopathol ; 268: 110702, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183837

RESUMO

Profiling the T cell receptor (TCR) repertoire using next-generation sequencing has become common in both human and translational research. Companion dogs with spontaneous tumors, including canine melanoma, share several features, e.g., natural occurrence, shared environmental exposures, natural outbred population, and immunocompetence. T cells play an important role in the adaptive immune system by recognizing specific antigens via a surface TCR. As such, understanding the canine T cell response to vaccines, cancer, immunotherapies, and infectious diseases is critically important for both dog and human health. Off-the-shelf commercial reagents, kits and services are readily available for human, non-human primate, and mouse in this context. However, these resources are limited for the canine. In this study, we present a cost-effective protocol for analysis of canine TCR beta chain genes. Workflow can be accomplished in 1-2 days starting with total RNA and resulting in libraries ready for sequencing on Illumina platforms.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Linfócitos T , Cães , Animais , Camundongos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Sequenciamento de Nucleotídeos em Larga Escala/veterinária
5.
J Autoimmun ; 142: 103132, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956528

RESUMO

Rheumatoid factors (RFs), polyreactive antibodies canonically known to bind two conformational epitopes of IgG Fc, are a hallmark of rheumatoid arthritis but also can arise in other inflammatory conditions and infections. Also, infections may contribute to the development of rheumatoid arthritis and other autoimmune diseases. Recently, RFs only in rheumatoid arthritis were found to bind novel linear IgG epitopes as well as thousands of other rheumatoid arthritis autoantigens. Specific epitopes recognized by infection-induced polyreactive RFs remain undefined but could provide insights into loss of immune tolerance. Here, we identified novel linear IgG epitopes bound by RFs in COVID-19 but not rheumatoid arthritis or other conditions. The main COVID-19 RF was polyreactive, binding two IgG and multiple viral peptides with a tripeptide motif, as well as IgG Fc and SARS-CoV-2 spike proteins. In contrast, a rheumatoid arthritis-specific RF recognized IgG Fc, but not tripeptide motif-containing peptides or spike. Thus, RFs have disease-specific IgG reactivity and distinct polyreactivities that reflect the broader immune response. Moreover, the polyreactivity of a virus-induced RF appears to be attributable to a very short peptide motif. These findings refine our understanding of RFs and provide new insights into how viral infections may contribute to autoimmunity.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , COVID-19 , Humanos , Epitopos , SARS-CoV-2 , Fator Reumatoide/metabolismo , Peptídeos , Imunoglobulina G
6.
Front Immunol ; 14: 1221155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077403

RESUMO

Sera of immune mice that were previously cured of their melanoma through a combined radiation and immunocytokine immunotherapy regimen consisting of 12 Gy of external beam radiation and the intratumoral administration of an immunocytokine (anti-GD2 mAb coupled to IL-2) with long-term immunological memory showed strong antibody-binding against melanoma tumor cell lines via flow cytometric analysis. Using a high-density whole-proteome peptide array (of 6.090.593 unique peptides), we assessed potential protein-targets for antibodies found in immune sera. Sera from 6 of these cured mice were analyzed with this high-density, whole-proteome peptide array to determine specific antibody-binding sites and their linear peptide sequence. We identified thousands of peptides that were targeted by these 6 mice and exhibited strong antibody binding only by immune (after successful cure and rechallenge), not naïve (before tumor implantation) sera and developed a robust method to detect these differentially targeted peptides. Confirmatory studies were done to validate these results using 2 separate systems, a peptide ELISA and a smaller scale peptide array utilizing a slightly different technology. To the best of our knowledge, this is the first study of the full set of germline encoded linear peptide-based proteome epitopes that are recognized by immune sera from mice cured of cancer via radio-immunotherapy. We furthermore found that although the generation of B-cell repertoire in immune development is vastly variable, and numerous epitopes are identified uniquely by immune serum from each of these 6 immune mice evaluated, there are still several epitopes and proteins that are commonly recognized by at least half of the mice studied. This suggests that every mouse has a unique set of antibodies produced in response to the curative therapy, creating an individual "fingerprint." Additionally, certain epitopes and proteins stand out as more immunogenic, as they are recognized by multiple mice in the immune group.


Assuntos
Melanoma , Animais , Camundongos , Proteoma , Camundongos Endogâmicos C57BL , Imunoterapia , Peptídeos , Epitopos , Soros Imunes
7.
Cell Rep ; 42(12): 113556, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096050

RESUMO

We report an in situ vaccination, adaptable to nearly any type of cancer, that combines radiotherapy targeting one tumor and intratumoral injection of this site with tumor-specific antibody and interleukin-2 (IL-2; 3xTx). In a phase I clinical trial, administration of 3xTx (with an immunocytokine fusion of tumor-specific antibody and IL-2, hu14.18-IL2) to subjects with metastatic melanoma increases peripheral CD8+ T cell effector polyfunctionality. This suggests the potential for 3xTx to promote antitumor immunity against metastatic tumors. In poorly immunogenic syngeneic murine melanoma or head and neck carcinoma models, 3xTx stimulates CD8+ T cell-mediated antitumor responses at targeted and non-targeted tumors. During 3xTx treatment, natural killer (NK) cells promote CTLA4+ regulatory T cell (Treg) apoptosis in non-targeted tumors. This is dependent on NK cell expression of CD86, which is upregulated downstream of KLRK1. NK cell depletion increases Treg infiltration, diminishing CD8+ T cell-dependent antitumor response. These findings demonstrate that NK cells sustain and propagate CD8+ T cell immunity following 3xTx.


Assuntos
Interleucina-2 , Melanoma , Camundongos , Humanos , Animais , Interleucina-2/metabolismo , Melanoma/metabolismo , Células Matadoras Naturais , Linfócitos T CD8-Positivos , Vacinação
8.
iScience ; 26(5): 106621, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37250328

RESUMO

Hemogenic endothelium (HE) is the main source of blood cells in the embryo. To improve blood manufacturing from human pluripotent stem cells (hPSCs), it is essential to define the molecular determinants that enhance HE specification and promote development of the desired blood lineage from HE. Here, using SOX18-inducible hPSCs, we revealed that SOX18 forced expression at the mesodermal stage, in contrast to its homolog SOX17, has minimal effects on arterial specification of HE, expression of HOXA genes and lymphoid differentiation. However, forced expression of SOX18 in HE during endothelial-to-hematopoietic transition (EHT) greatly increases NK versus T cell lineage commitment of hematopoietic progenitors (HPs) arising from HE predominantly expanding CD34+CD43+CD235a/CD41a-CD45- multipotent HPs and altering the expression of genes related to T cell and Toll-like receptor signaling. These studies improve our understanding of lymphoid cell specification during EHT and provide a new tool for enhancing NK cell production from hPSCs for immunotherapies.

9.
Cancers (Basel) ; 16(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38201618

RESUMO

BACKGROUND AND PURPOSE: Chimeric antigen receptor (CAR) T cells have been relatively ineffective against solid tumors. Low-dose radiation which can be delivered to multiple sites of metastases by targeted radionuclide therapy (TRT) can elicit immunostimulatory effects. However, TRT has never been combined with CAR T cells against solid tumors in a clinical setting. This study investigated the effects of radiation delivered by Lutetium-177 (177Lu) and Actinium-225 (225Ac) on the viability and effector function of CAR T cells in vitro to evaluate the feasibility of such therapeutic combinations. After the irradiation of anti-GD2 CAR T cells with various doses of radiation delivered by 177Lu or 225Ac, their viability and cytotoxic activity against GD2-expressing human CHLA-20 neuroblastoma and melanoma M21 cells were determined by flow cytometry. The expression of the exhaustion marker PD-1, activation marker CD69 and the activating receptor NKG2D was measured on the irradiated anti-GD2 CAR T cells. Both 177Lu and 225Ac displayed a dose-dependent toxicity on anti-GD2 CAR T cells. However, radiation enhanced the cytotoxic activity of these CAR T cells against CHLA-20 and M21 irrespective of the dose tested and the type of radionuclide. No significant changes in the expression of PD-1, CD69 and NKG2D was noted on the CAR T cells following irradiation. Given a lower CAR T cell viability at equal doses and an enhancement of cytotoxic activity irrespective of the radionuclide type, 177Lu-based TRT may be preferred over 225Ac-based TRT when evaluating a potential synergism between these therapies in vivo against solid tumors.

10.
PLoS One ; 17(12): e0274704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36480501

RESUMO

Multiple myeloma (MM), a malignant plasma cell infiltration of the bone marrow, is generally considered incurable: resistance to multiple therapeutic drugs inevitably arises from tumor cell-intrinsic and tumor microenvironment (TME)-mediated mechanisms. Here we report that the proteoglycan tandem repeat 1 (PTR1) domain of the TME matrix protein, hyaluronan and proteoglycan link protein 1 (HAPLN1), induces a host of cell survival genes in MM cells and variable resistance to different classes of clinical drugs, including certain proteasome inhibitors, steroids, immunomodulatory drugs, and DNA damaging agents, in several MM cell lines tested. Collectively, our study identifies HAPLN1 as an extracellular matrix factor that can simultaneously confer MM cell resistance to multiple therapeutic drugs.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Microambiente Tumoral
12.
Nucleic Acids Res ; 49(21): 12211-12233, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34865122

RESUMO

Subunits of the chromatin remodeler SWI/SNF are the most frequently disrupted genes in cancer. However, how post-translational modifications (PTM) of SWI/SNF subunits elicit epigenetic dysfunction remains unknown. Arginine-methylation of BAF155 by coactivator-associated arginine methyltransferase 1 (CARM1) promotes triple-negative breast cancer (TNBC) metastasis. Herein, we discovered the dual roles of methylated-BAF155 (me-BAF155) in promoting tumor metastasis: activation of super-enhancer-addicted oncogenes by recruiting BRD4, and repression of interferon α/γ pathway genes to suppress host immune response. Pharmacological inhibition of CARM1 and BAF155 methylation not only abrogated the expression of an array of oncogenes, but also boosted host immune responses by enhancing the activity and tumor infiltration of cytotoxic T cells. Moreover, strong me-BAF155 staining was detected in circulating tumor cells from metastatic cancer patients. Despite low cytotoxicity, CARM1 inhibitors strongly inhibited TNBC cell migration in vitro, and growth and metastasis in vivo. These findings illustrate a unique mechanism of arginine methylation of a SWI/SNF subunit that drives epigenetic dysregulation, and establishes me-BAF155 as a therapeutic target to enhance immunotherapy efficacy.


Assuntos
Imunoterapia/métodos , Metástase Neoplásica/imunologia , Fatores de Transcrição/imunologia , Neoplasias de Mama Triplo Negativas , Animais , Proteínas de Ciclo Celular/imunologia , Linhagem Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia
13.
EMBO J ; 40(22): e108065, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34487377

RESUMO

The pyruvate kinase M2 isoform (PKM2) is preferentially expressed in cancer cells to regulate anabolic metabolism. Although PKM2 was recently reported to regulate lipid homeostasis, the molecular mechanism remains unclear. Herein, we discovered an ER transmembrane protein 33 (TMEM33) as a downstream effector of PKM2 that regulates activation of SREBPs and lipid metabolism. Loss of PKM2 leads to up-regulation of TMEM33, which recruits RNF5, an E3 ligase, to promote SREBP-cleavage activating protein (SCAP) degradation. TMEM33 is transcriptionally regulated by nuclear factor erythroid 2-like 1 (NRF1), whose cleavage and activation are controlled by PKM2 levels. Total plasma cholesterol levels are elevated by either treatment with PKM2 tetramer-promoting agent TEPP-46 or by global PKM2 knockout in mice, highlighting the essential function of PKM2 in lipid metabolism. Although depletion of PKM2 decreases cancer cell growth, global PKM2 knockout accelerates allografted tumor growth. Together, our findings reveal the cell-autonomous and systemic effects of PKM2 in lipid homeostasis and carcinogenesis, as well as TMEM33 as a bona fide regulator of lipid metabolism.


Assuntos
Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Colesterol/sangue , Feminino , Regulação Neoplásica da Expressão Gênica , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos Knockout , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Hormônios Tireóideos/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Ligação a Hormônio da Tireoide
14.
J Clin Oncol ; 39(31): 3430-3440, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34292776

RESUMO

PURPOSE: The prevalence of germline pathogenic variants (PVs) in established breast cancer predisposition genes in women in the general population over age 65 years is not well-defined. However, testing guidelines suggest that women diagnosed with breast cancer over age 65 years might have < 2.5% likelihood of a PV in a high-penetrance gene. This study aimed to establish the frequency of PVs and remaining risks of breast cancer for each gene in women over age 65 years. METHODS: A total of 26,707 women over age 65 years from population-based studies (51.5% with breast cancer and 48.5% unaffected) were tested for PVs in germline predisposition gene. Frequencies of PVs and associations between PVs in each gene and breast cancer were assessed, and remaining lifetime breast cancer risks were estimated for non-Hispanic White women with PVs. RESULTS: The frequency of PVs in predisposition genes was 3.18% for women with breast cancer and 1.48% for unaffected women over age 65 years. PVs in BRCA1, BRCA2, and PALB2 were found in 3.42% of women diagnosed with estrogen receptor (ER)-negative, 1.0% with ER-positive, and 3.01% with triple-negative breast cancer. Frequencies of PVs were lower among women with no first-degree relatives with breast cancer. PVs in CHEK2, PALB2, BRCA2, and BRCA1 were associated with increased risks (odds ratio = 2.9-4.0) of breast cancer. Remaining lifetime risks of breast cancer were ≥ 15% for those with PVs in BRCA1, BRCA2, and PALB2. CONCLUSION: This study suggests that all women diagnosed with triple-negative breast cancer or ER-negative breast cancer should receive genetic testing and that women over age 65 years with BRCA1 and BRCA2 PVs and perhaps with PALB2 and CHEK2 PVs should be considered for magnetic resonance imaging screening.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/patologia , Quinase do Ponto de Checagem 2/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Estudos de Casos e Controles , Feminino , Seguimentos , Testes Genéticos , Humanos , Prognóstico
15.
J Clin Oncol ; 39(23): 2564-2573, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34101481

RESUMO

PURPOSE: This study assessed the joint association of pathogenic variants (PVs) in breast cancer (BC) predisposition genes and polygenic risk scores (PRS) with BC in the general population. METHODS: A total of 26,798 non-Hispanic white BC cases and 26,127 controls from predominately population-based studies in the Cancer Risk Estimates Related to Susceptibility consortium were evaluated for PVs in BRCA1, BRCA2, ATM, CHEK2, PALB2, BARD1, BRIP1, CDH1, and NF1. PRS based on 105 common variants were created using effect estimates from BC genome-wide association studies; the performance of an overall BC PRS and estrogen receptor-specific PRS were evaluated. The odds of BC based on the PVs and PRS were estimated using penalized logistic regression. The results were combined with age-specific incidence rates to estimate 5-year and lifetime absolute risks of BC across percentiles of PRS by PV status and first-degree family history of BC. RESULTS: The estimated lifetime risks of BC among general-population noncarriers, based on 10th and 90th percentiles of PRS, were 9.1%-23.9% and 6.7%-18.2% for women with or without first-degree relatives with BC, respectively. Taking PRS into account, more than 95% of BRCA1, BRCA2, and PALB2 carriers had > 20% lifetime risks of BC, whereas, respectively, 52.5% and 69.7% of ATM and CHEK2 carriers without first-degree relatives with BC, and 78.8% and 89.9% of those with a first-degree relative with BC had > 20% risk. CONCLUSION: PRS facilitates personalization of BC risk among carriers of PVs in predisposition genes. Incorporating PRS into BC risk estimation may help identify > 30% of CHEK2 and nearly half of ATM carriers below the 20% lifetime risk threshold, suggesting the addition of PRS may prevent overscreening and enable more personalized risk management approaches.


Assuntos
Neoplasias da Mama/genética , Variação Genética/genética , Adulto , Idoso , Neoplasias da Mama/patologia , Feminino , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Fatores de Risco
16.
Development ; 148(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766932

RESUMO

Yin Yang 1 (YY1) is a ubiquitous transcription factor and mammalian Polycomb Group protein (PcG) with important functions for regulating lymphocyte development and stem cell self-renewal. YY1 mediates stable PcG-dependent transcriptional repression via recruitment of PcG proteins that result in histone modifications. Many questions remain unanswered regarding how cell- and tissue-specificity is achieved by PcG proteins. Here, we demonstrate that a conditional knockout of Yy1 in the hematopoietic system results in an early T cell developmental blockage at the double negative (DN) 1 stage with reduced Notch1 signaling. There is a lineage-specific requirement for YY1 PcG function. YY1 PcG domain is required for T and B cell development but not necessary for myeloid cells. YY1 functions in early T cell development are multicomponent and involve both PcG-dependent and -independent regulations. Although YY1 promotes early T cell survival through its PcG function, its function to promote the DN1-to-DN2 transition and Notch1 expression and signaling is independent of its PcG function. Our results reveal how a ubiquitously expressed PcG protein mediates lineage-specific and context-specific functions to control early T cell development.


Assuntos
Diferenciação Celular/fisiologia , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Linfócitos T/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Animais , Sobrevivência Celular , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Receptor Notch1 , Transcriptoma
17.
Cell Rep ; 34(7): 108758, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33596423

RESUMO

SOX17 has been implicated in arterial specification and the maintenance of hematopoietic stem cells (HSCs) in the murine embryo. However, knowledge about molecular pathways and stage-specific effects of SOX17 in humans remains limited. Here, using SOX17-knockout and SOX17-inducible human pluripotent stem cells (hPSCs), paired with molecular profiling studies, we reveal that SOX17 is a master regulator of HOXA and arterial programs in hemogenic endothelium (HE) and is required for the specification of HE with robust lympho-myeloid potential and DLL4+CXCR4+ phenotype resembling arterial HE at the sites of HSC emergence. Along with the activation of NOTCH signaling, SOX17 directly activates CDX2 expression, leading to the upregulation of the HOXA cluster genes. Since deficiencies in HOXA and NOTCH signaling contribute to the impaired in vivo engraftment of hPSC-derived hematopoietic cells, the identification of SOX17 as a key regulator linking arterial and HOXA programs in HE may help to program HSC fate from hPSCs.


Assuntos
Hematopoese/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição SOXF/metabolismo , Animais , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo
18.
N Engl J Med ; 384(5): 440-451, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33471974

RESUMO

BACKGROUND: Population-based estimates of the risk of breast cancer associated with germline pathogenic variants in cancer-predisposition genes are critically needed for risk assessment and management in women with inherited pathogenic variants. METHODS: In a population-based case-control study, we performed sequencing using a custom multigene amplicon-based panel to identify germline pathogenic variants in 28 cancer-predisposition genes among 32,247 women with breast cancer (case patients) and 32,544 unaffected women (controls) from population-based studies in the Cancer Risk Estimates Related to Susceptibility (CARRIERS) consortium. Associations between pathogenic variants in each gene and the risk of breast cancer were assessed. RESULTS: Pathogenic variants in 12 established breast cancer-predisposition genes were detected in 5.03% of case patients and in 1.63% of controls. Pathogenic variants in BRCA1 and BRCA2 were associated with a high risk of breast cancer, with odds ratios of 7.62 (95% confidence interval [CI], 5.33 to 11.27) and 5.23 (95% CI, 4.09 to 6.77), respectively. Pathogenic variants in PALB2 were associated with a moderate risk (odds ratio, 3.83; 95% CI, 2.68 to 5.63). Pathogenic variants in BARD1, RAD51C, and RAD51D were associated with increased risks of estrogen receptor-negative breast cancer and triple-negative breast cancer, whereas pathogenic variants in ATM, CDH1, and CHEK2 were associated with an increased risk of estrogen receptor-positive breast cancer. Pathogenic variants in 16 candidate breast cancer-predisposition genes, including the c.657_661del5 founder pathogenic variant in NBN, were not associated with an increased risk of breast cancer. CONCLUSIONS: This study provides estimates of the prevalence and risk of breast cancer associated with pathogenic variants in known breast cancer-predisposition genes in the U.S. population. These estimates can inform cancer testing and screening and improve clinical management strategies for women in the general population with inherited pathogenic variants in these genes. (Funded by the National Institutes of Health and the Breast Cancer Research Foundation.).


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença/genética , Variação Genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Mutação , Razão de Chances , Risco , Análise de Sequência de DNA , Adulto Jovem
19.
Sci Rep ; 11(1): 2520, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510214

RESUMO

Non-small cell lung cancer (NSCLC) brain metastasis cell lines and in vivo models are not widely accessible. Herein we report on a direct-from patient-derived xenograft (PDX) model system of NSCLC brain metastases with genomic annotation useful for translational and mechanistic studies. Both heterotopic and orthotopic intracranial xenografts were established and RNA and DNA sequencing was performed on patient and matching tumors. Morphologically, strong retention of cytoarchitectural features was observed between original patient tumors and PDXs. Transcriptome and mutation analysis revealed high correlation between matched patient and PDX samples with more than more than 95% of variants detected being retained in the matched PDXs. PDXs demonstrated response to radiation, response to selumetinib in tumors harboring KRAS G12C mutations and response to savolitinib in a tumor with MET exon 14 skipping mutation. Savolitinib also demonstrated in vivo radiation enhancement in our MET exon 14 mutated PDX. Early passage cell strains showed high consistency between patient and PDX tumors. Together, these data describe a robust human xenograft model system for investigating NSCLC brain metastases. These PDXs and cell lines show strong phenotypic and molecular correlation with the original patient tumors and provide a valuable resource for testing preclinical therapeutics.


Assuntos
Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/patologia , Modelos Animais de Doenças , Xenoenxertos , Neoplasias Pulmonares/patologia , Alelos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biópsia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Carcinoma Pulmonar de Células não Pequenas/terapia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Genes Reporter , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/terapia , Inibidores de Proteínas Quinases/farmacologia , Radioterapia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Laryngoscope ; 131(2): E540-E546, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32619300

RESUMO

OBJECTIVE: Idiopathic subglottic stenosis (iSGS) is a chronic inflammatory condition that causes dyspnea and affects middle-aged women of White race and non-Latino or Hispanic ethnicity. To better characterize its phenotype and pathogenesis, we assessed the proteomic and genomic methylation signatures of subglottic tissue collected from iSGS patients compared to controls. STUDY DESIGN: Molecular analysis of clinical biospecimens. METHODS: We collected subglottic tissue biopsies from 12 patients during direct laryngoscopy, immediately prior to surgical treatment of iSGS; as well as from 4 age-, sex-, and race/ethnicity-matched control patients undergoing other direct laryngoscopic procedures. We isolated protein and genomic DNA, acquired proteomic data using label-free quantitative mass spectrometry techniques, and acquired genome-wide methylation data using bisulfite conversion and a microarray platform. We compared molecular profiles across the iSGS and control groups, and with respect to clinical course in the iSGS group. Eight of the 12 iSGS patients underwent subsequent blood collection and plasma isolation for further assessment. RESULTS: Proteomic analysis revealed 42 differentially abundant proteins in the iSGS biopsies compared to controls, inferring enrichment of biological pathways associated with early wound healing, innate immunity, matrix remodeling, and metabolism. Proteome-based hierarchical clustering organized patients into two iSGS and one control subgroups. Methylation analysis revealed five hypermethylated genes in the iSGS biopsies compared to controls, including the biotin recycling enzyme biotinidase (BTD). Follow-up analysis showed elevated plasma BTD activity in iSGS patients compared to both controls and published normative data. CONCLUSION: iSGS exhibits distinct proteomic and genomic methylation signatures. These signatures expand current understanding of the iSGS phenotype, support the possibility of disease subgroups, and should inform the direction of future experimental studies. LEVEL OF EVIDENCE: Not applicable Laryngoscope, 131:E540-E546, 2021.


Assuntos
Metilação de DNA , Laringoestenose/etiologia , Proteômica , Adulto , Idoso , Biomarcadores , Biópsia , Biotina/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Laringoestenose/genética , Laringoestenose/metabolismo , Laringoestenose/patologia , Laringe/metabolismo , Laringe/patologia , Pessoa de Meia-Idade , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA