Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 14(1): 259, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726837

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) have broad potential as a cell therapy including for the treatment of drug-resistant inflammatory conditions with abnormal T cell proliferation such as graft-versus-host disease (GVHD). Clinical success, however, has been complicated by the heterogeneity of culture-expanded MSCs as well as donor variability. Here, we devise culture conditions that promote expansion of MSCs with enhanced immunomodulatory functions both in vitro and in animal models of GVHD. METHODS: Human bone marrow-derived MSCs were expanded at high-confluency (MSCHC) and low-confluency state (MSCLC). Their immunomodulatory properties were evaluated with in vitro co-culture assays based on suppression of activated T cell proliferation and secretion of pro-inflammatory cytokines from activated T cells. Metabolic state of these cells was determined, while RNA sequencing was performed to explore transcriptome of these MSCs. Ex vivo expanded MSCHC or MSCLC was injected into human peripheral blood mononuclear cells (PBMC)-induced GVHD mouse model to determine their in vivo therapeutic efficacy based on clinical grade scoring, human CD45+ blood count and histopathological examination. RESULTS: As compared to MSCLC, MSCHC significantly reduced both the proliferation of anti-CD3/CD28-activated T cells and secretion of pro-inflammatory cytokines upon MSCHC co-culture across several donors even in the absence of cytokine priming. Mechanistically, metabolic analysis of MSCHC prior to co-culture with activated T cells showed increased glycolytic metabolism and lactate secretion compared to MSCLC, consistent with their ability to inhibit T cell proliferation. Transcriptome analysis further revealed differential expression of immunomodulatory genes including TRIM29, BPIFB4, MMP3 and SPP1 in MSCHC as well as enriched pathways including cytokine-cytokine receptor interactions, cell adhesion and PI3K-AKT signalling. Lastly, we demonstrate in a human PBMC-induced GVHD mouse model that delivery of MSCHC showed greater suppression of inflammation and improved outcomes compared to MSCLC and saline controls. CONCLUSION: Our study provides evidence that ex vivo expansion of MSCs at high confluency alters the metabolic and transcriptomic states of these cells. Importantly, this approach maximizes the production of MSCs with enhanced immunomodulatory functions without priming, thus providing a non-invasive and generalizable strategy for improving the use of MSCs for the treatment of inflammatory diseases.


Assuntos
Leucócitos Mononucleares , Células-Tronco Mesenquimais , Animais , Camundongos , Humanos , Medula Óssea , Fosfatidilinositol 3-Quinases , Citocinas , Modelos Animais de Doenças , Proteínas de Ligação a DNA , Fatores de Transcrição , Peptídeos e Proteínas de Sinalização Intercelular
2.
J Gen Virol ; 101(1): 79-85, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774391

RESUMO

Dengue virus (DENV) infection is associated with clinical ocular presentations and here DENV infection of the eye was assessed in mice. In an AG129 mouse model of antibody-dependent enhancement of DENV infection, DENV RNA was detected in the eye and vascular changes were present in the retinae. Intraocular CD8 and IFN-γ mRNA were increased in mice born to DENV-naïve, but not DENV-immune mothers, while TNF-α mRNA was induced and significantly higher in mice born to DENV-immune than DENV-naïve mothers. DENV RNA was detected in the eye following intracranial DENV infection and CD8 mRNA but not IFN-γ nor TNF-α were induced. In all models, viperin was increased following DENV infection. Thus, DENV in the circulation or the brain can infect the eye and stimulate innate immune responses, with induction of viperin as one response that consistently occurs in multiple DENV eye-infection models in both an IFN-dependent and independent manner.


Assuntos
Vírus da Dengue/imunologia , Dengue/imunologia , Infecções Oculares Virais/imunologia , Infecções Oculares Virais/virologia , Inflamação/imunologia , Inflamação/virologia , Animais , Anticorpos Facilitadores/imunologia , Dengue/virologia , Modelos Animais de Doenças , Olho/imunologia , Olho/virologia , Imunidade Inata/imunologia , Interferon gama/imunologia , Camundongos , Fator de Necrose Tumoral alfa/imunologia
3.
PLoS Negl Trop Dis ; 12(2): e0006209, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29425203

RESUMO

Dengue virus (DENV) infection imposes enormous health and economic burden worldwide with no approved treatment. Several small molecules, including lovastatin, celgosivir, balapiravir and chloroquine have been tested for potential anti-dengue activity in clinical trials; none of these have demonstrated a protective effect. Recently, based on identification and characterization of cross-serotype neutralizing antibodies, there is increasing attention on the potential for dengue immunotherapy. Here, we tested the ability of VIS513, an engineered cross-neutralizing humanized antibody targeting the DENV E protein domain III, to overcome antibody-enhanced infection and high but brief viremia, which are commonly encountered in dengue patients, in various in vitro and in vivo models. We observed that VIS513 efficiently neutralizes DENV at clinically relevant viral loads or in the presence of enhancing levels of DENV immune sera. Single therapeutic administration of VIS513 in mouse models of primary infection or lethal secondary antibody-enhanced infection, reduces DENV titers and protects from lethal infection. Finally, VIS513 administration does not readily lead to resistance, either in cell culture systems or in animal models of dengue infection. The findings suggest that rapid viral reduction during acute DENV infection with a monoclonal antibody is feasible.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/administração & dosagem , Anticorpos Antivirais/sangue , Anticorpos Antivirais/genética , Antígenos Virais/química , Antígenos Virais/genética , Linhagem Celular , Chlorocebus aethiops , Reações Cruzadas/imunologia , Vírus da Dengue/genética , Vírus da Dengue/patogenicidade , Modelos Animais de Doenças , Epitopos , Feminino , Humanos , Soros Imunes , Imunoterapia , Técnicas In Vitro , Camundongos , Modelos Estruturais , Mutação , Testes de Neutralização , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Sorogrupo , Células THP-1 , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Ensaio de Placa Viral
4.
Expert Rev Vaccines ; 15(4): 483-95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26508565

RESUMO

Despite 70 years of research that has intensified in the past decade, a safe and efficacious dengue vaccine has yet to be available. In addition to the expected challenges such as identifying immune correlates of protection, the dengue vaccine field has faced additional hurdles including the necessity to design a tetravalent formulation and the risk of antibody-mediated disease enhancement. Nevertheless, tetravalent live attenuated vaccine candidates have reached efficacy trials and demonstrated some benefit, despite imbalanced immunogenicity and incomplete protection against the four serotypes. Meanwhile, the development of sub-unit dengue vaccines has gained momentum. As the target of most of the neutralizing antibodies so far reported, the virus envelope E protein has been the focus of much effort and represents the leading dengue sub-unit vaccine candidate. However, its notorious poor immunogenicity has prompted the development of innovative approaches to make E-derived constructs part of the second generation dengue vaccines portfolio.


Assuntos
Vacinas contra Dengue/imunologia , Vacinas contra Dengue/isolamento & purificação , Descoberta de Drogas/métodos , Descoberta de Drogas/tendências , Humanos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/isolamento & purificação , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/isolamento & purificação , Proteínas do Envelope Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA