Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Commun ; 15(1): 749, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272908

RESUMO

Transposable elements (TEs) are prevalent repeats in the human genome, play a significant role in the regulome, and their disruption can contribute to tumorigenesis. However, TE influence on gene expression in cancer remains unclear. Here, we analyze 275 normal colon and 276 colorectal cancer samples from the SYSCOL cohort, discovering 10,231 and 5,199 TE-expression quantitative trait loci (eQTLs) in normal and tumor tissues, respectively, of which 376 are colorectal cancer specific eQTLs, likely due to methylation changes. Tumor-specific TE-eQTLs show greater enrichment of transcription factors, compared to shared TE-eQTLs suggesting specific regulation of their expression in tumor. Bayesian networks reveal 1,766 TEs as mediators of genetic effects, altering the expression of 1,558 genes, including 55 known cancer driver genes and show that tumor-specific TE-eQTLs trigger the driver capability of TEs. These insights expand our knowledge of cancer drivers, deepening our understanding of tumorigenesis and presenting potential avenues for therapeutic interventions.


Assuntos
Neoplasias Colorretais , Elementos de DNA Transponíveis , Humanos , Elementos de DNA Transponíveis/genética , Teorema de Bayes , Fatores de Transcrição/metabolismo , Carcinogênese/genética , Neoplasias Colorretais/genética
2.
BMC Genomics ; 24(1): 442, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543566

RESUMO

BACKGROUND: Expression quantitative trait loci (eQTL) studies provide insights into regulatory mechanisms underlying disease risk. Expanding studies of gene regulation to underexplored populations and to medically relevant tissues offers potential to reveal yet unknown regulatory variants and to better understand disease mechanisms. Here, we performed eQTL mapping in subcutaneous (S) and visceral (V) adipose tissue from 106 Greek individuals (Greek Metabolic study, GM) and compared our findings to those from the Genotype-Tissue Expression (GTEx) resource. RESULTS: We identified 1,930 and 1,515 eGenes in S and V respectively, over 13% of which are not observed in GTEx adipose tissue, and that do not arise due to different ancestry. We report additional context-specific regulatory effects in genes of clinical interest (e.g. oncogene ST7) and in genes regulating responses to environmental stimuli (e.g. MIR21, SNX33). We suggest that a fraction of the reported differences across populations is due to environmental effects on gene expression, driving context-specific eQTLs, and suggest that environmental effects can determine the penetrance of disease variants thus shaping disease risk. We report that over half of GM eQTLs colocalize with GWAS SNPs and of these colocalizations 41% are not detected in GTEx. We also highlight the clinical relevance of S adipose tissue by revealing that inflammatory processes are upregulated in individuals with obesity, not only in V, but also in S tissue. CONCLUSIONS: By focusing on an understudied population, our results provide further candidate genes for investigation regarding their role in adipose tissue biology and their contribution to disease risk and pathogenesis.


Assuntos
Predisposição Genética para Doença , Locos de Características Quantitativas , Humanos , Grécia , Regulação da Expressão Gênica , Genótipo , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla/métodos
3.
PLoS Genet ; 18(6): e1010212, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666741

RESUMO

The Human Leukocyte Antigen (HLA) is a critical genetic system for different outcomes after solid organ and hematopoietic cell transplantation. Its polymorphism is usually determined by molecular technologies at the DNA level. A potential role of HLA allelic expression remains under investigation in the context of the allogenic immune response between donors and recipients. In this study, we quantified the allelic expression of all three HLA class I loci (HLA-A, B and C) by RNA sequencing and conducted an analysis of expression quantitative traits loci (eQTL) to investigate whether HLA expression regulation could be associated with non-coding gene variations. HLA-B alleles exhibited the highest expression levels followed by HLA-C and HLA-A alleles. The max fold expression variation was observed for HLA-C alleles. The expression of HLA class I loci of distinct individuals demonstrated a coordinated and paired expression of both alleles of the same locus. Expression of conserved HLA-A~B~C haplotypes differed in distinct PBMC's suggesting an individual regulated expression of both HLA class I alleles and haplotypes. Cytokines TNFα /IFNß, which induced a very similar upregulation of HLA class I RNA and cell surface expression across alleles did not modify the individually coordinated expression at the three HLA class I loci. By identifying cis eQTLs for the HLA class I genes, we show that the non-coding eQTLs explain 29%, 13%, and 31% of the respective HLA-A, B, C expression variance in unstimulated cells, and 9%, 23%, and 50% of the variance in cytokine-stimulated cells. The eQTLs have significantly higher effect sizes in stimulated cells compared to unstimulated cells for HLA-B and HLA-C genes expression. Our data also suggest that the identified eQTLs are independent from the coding variation which defines HLA alleles and thus may be influential on intra-allele expression variability although they might not represent the causal eQTLs.


Assuntos
Antígenos HLA-C , Leucócitos Mononucleares , Alelos , Frequência do Gene , Antígenos HLA , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Antígenos HLA-C/genética , Haplótipos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II/genética , Humanos
5.
Nat Commun ; 11(1): 2025, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332866

RESUMO

Transcriptional characterization and classification has potential to resolve the inter-tumor heterogeneity of colorectal cancer and improve patient management. Yet, robust transcriptional profiling is difficult using formalin-fixed, paraffin-embedded (FFPE) samples, which complicates testing in clinical and archival material. We present MethCORR, an approach that allows uniform molecular characterization and classification of fresh-frozen and FFPE samples. MethCORR identifies genome-wide correlations between RNA expression and DNA methylation in fresh-frozen samples. This information is used to infer gene expression information in FFPE samples from their methylation profiles. MethCORR is here applied to methylation profiles from 877 fresh-frozen/FFPE samples and comparative analysis identifies the same two subtypes in four independent cohorts. Furthermore, subtype-specific prognostic biomarkers that better predicts relapse-free survival (HR = 2.66, 95%CI [1.67-4.22], P value < 0.001 (log-rank test)) than UICC tumor, node, metastasis (TNM) staging and microsatellite instability status are identified and validated using DNA methylation-specific PCR. The MethCORR approach is general, and may be similarly successful for other cancer types.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/mortalidade , Epigenoma/genética , Modelos Genéticos , Recidiva Local de Neoplasia/diagnóstico , Idoso , Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Metilação de DNA , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Feminino , Formaldeído , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Inclusão em Parafina , Prognóstico , Reto/patologia , Medição de Risco/métodos , Fixação de Tecidos
6.
Nat Commun ; 9(1): 3664, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202008

RESUMO

Point mutations in cancer have been extensively studied but chromosomal gains and losses have been more challenging to interpret due to their unspecific nature. Here we examine high-resolution allelic imbalance (AI) landscape in 1699 colorectal cancers, 256 of which have been whole-genome sequenced (WGSed). The imbalances pinpoint 38 genes as plausible AI targets based on previous knowledge. Unbiased CRISPR-Cas9 knockout and activation screens identified in total 79 genes within AI peaks regulating cell growth. Genetic and functional data implicate loss of TP53 as a sufficient driver of AI. The WGS highlights an influence of copy number aberrations on the rate of detected somatic point mutations. Importantly, the data reveal several associations between AI target genes, suggesting a role for a network of lineage-determining transcription factors in colorectal tumorigenesis. Overall, the results unravel the contribution of AI in colorectal cancer and provide a plausible explanation why so few genes are commonly affected by point mutations in cancers.


Assuntos
Desequilíbrio Alélico , Neoplasias Colorretais/genética , Predisposição Genética para Doença , Sistemas CRISPR-Cas , Aberrações Cromossômicas , Cromossomos Humanos Par 8 , Neoplasias Colorretais/patologia , Variações do Número de Cópias de DNA , Dinamarca , Perfilação da Expressão Gênica , Genômica , Genótipo , Humanos , Perda de Heterozigosidade , Repetições de Microssatélites , Fenótipo , Mutação Puntual , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA Interferente Pequeno/genética , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Sequenciamento Completo do Genoma
7.
EMBO Mol Med ; 10(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30108113

RESUMO

Microsatellite instability (MSI) leads to accumulation of an excessive number of mutations in the genome, mostly small insertions and deletions. MSI colorectal cancers (CRCs), however, also contain more point mutations than microsatellite-stable (MSS) tumors, yet they have not been as comprehensively studied. To identify candidate driver genes affected by point mutations in MSI CRC, we ranked genes based on mutation significance while correcting for replication timing and gene expression utilizing an algorithm, MutSigCV Somatic point mutation data from the exome kit-targeted area from 24 exome-sequenced sporadic MSI CRCs and respective normals, and 12 whole-genome-sequenced sporadic MSI CRCs and respective normals were utilized. The top 73 genes were validated in 93 additional MSI CRCs. The MutSigCV ranking identified several well-established MSI CRC driver genes and provided additional evidence for previously proposed CRC candidate genes as well as shortlisted genes that have to our knowledge not been linked to CRC before. Two genes, SMARCB1 and STK38L, were also functionally scrutinized, providing evidence of a tumorigenic role, for SMARCB1 mutations in particular.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Instabilidade de Microssatélites , Mutação Puntual , Redes Reguladoras de Genes , Humanos , Anotação de Sequência Molecular , Análise de Sequência de DNA
8.
Gut ; 67(3): 521-533, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28634199

RESUMO

OBJECTIVE: To elucidate the genetic architecture of gene expression in pancreatic tissues. DESIGN: We performed expression quantitative trait locus (eQTL) analysis in histologically normal pancreatic tissue samples (n=95) using RNA sequencing and the corresponding 1000 genomes imputed germline genotypes. Data from pancreatic tumour-derived tissue samples (n=115) from The Cancer Genome Atlas were included for comparison. RESULTS: We identified 38 615 cis-eQTLs (in 484 genes) in histologically normal tissues and 39 713 cis-eQTL (in 237 genes) in tumour-derived tissues (false discovery rate <0.1), with the strongest effects seen near transcriptional start sites. Approximately 23% and 42% of genes with significant cis-eQTLs appeared to be specific for tumour-derived and normal-derived tissues, respectively. Significant enrichment of cis-eQTL variants was noted in non-coding regulatory regions, in particular for pancreatic tissues (1.53-fold to 3.12-fold, p≤0.0001), indicating tissue-specific functional relevance. A common pancreatic cancer risk locus on 9q34.2 (rs687289) was associated with ABO expression in histologically normal (p=5.8×10-8) and tumour-derived (p=8.3×10-5) tissues. The high linkage disequilibrium between this variant and the O blood group generating deletion variant in ABO (exon 6) suggested that nonsense-mediated decay (NMD) of the 'O' mRNA might explain this finding. However, knockdown of crucial NMD regulators did not influence decay of the ABO 'O' mRNA, indicating that a gene regulatory element influenced by pancreatic cancer risk alleles may underlie the eQTL. CONCLUSIONS: We have identified cis-eQTLs representing potential functional regulatory variants in the pancreas and generated a rich data set for further studies on gene expression and its regulation in pancreatic tissues.


Assuntos
Sistema ABO de Grupos Sanguíneos/genética , Expressão Gênica , Pâncreas , Neoplasias Pancreáticas/genética , Locos de Características Quantitativas , RNA Neoplásico/análise , Transcriptoma , Alelos , Cromossomos Humanos Par 9 , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Degradação do RNAm Mediada por Códon sem Sentido , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de RNA
9.
Cell Rep ; 19(6): 1268-1280, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28494874

RESUMO

Colorectal cancer (CRC) is characterized by major inter-tumor diversity that complicates the prediction of disease and treatment outcomes. Recent efforts help resolve this by sub-classification of CRC into natural molecular subtypes; however, this strategy is not yet able to provide clinicians with improved tools for decision making. We here present an extended framework for CRC stratification that specifically aims to improve patient prognostication. Using transcriptional profiles from 1,100 CRCs, including >300 previously unpublished samples, we identify cancer cell and tumor archetypes and suggest the tumor microenvironment as a major prognostic determinant that can be influenced by the microbiome. Notably, our subtyping strategy allowed identification of archetype-specific prognostic biomarkers that provided information beyond and independent of UICC-TNM staging, MSI status, and consensus molecular subtyping. The results illustrate that our extended subtyping framework, combining subtyping and subtype-specific biomarkers, could contribute to improved patient prognostication and may form a strong basis for future studies.


Assuntos
Biomarcadores Tumorais/classificação , Neoplasias Colorretais/genética , Transcriptoma , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Neoplasias Colorretais/classificação , Neoplasias Colorretais/patologia , Humanos , Microbiota , Microambiente Tumoral
10.
Nat Commun ; 8: 14418, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28195176

RESUMO

Genome-wide association studies have identified a great number of non-coding risk variants for colorectal cancer (CRC). To date, the majority of these variants have not been functionally studied. Identification of allele-specific transcription factor (TF) binding is of great importance to understand regulatory consequences of such variants. A recently developed proteome-wide analysis of disease-associated SNPs (PWAS) enables identification of TF-DNA interactions in an unbiased manner. Here we perform a large-scale PWAS study to comprehensively characterize TF-binding landscape that is associated with CRC, which identifies 731 allele-specific TF binding at 116 CRC risk loci. This screen identifies the A-allele of rs1800734 within the promoter region of MLH1 as perturbing the binding of TFAP4 and consequently increasing DCLK3 expression through a long-range interaction, which promotes cancer malignancy through enhancing expression of the genes related to epithelial-to-mesenchymal transition.


Assuntos
Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Progressão da Doença , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Alelos , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA , Quinases Semelhantes a Duplacortina , Epigênese Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Proteína 1 Homóloga a MutL/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Proteoma , Proteômica , Fatores de Transcrição
11.
Mol Oncol ; 10(8): 1266-82, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27396952

RESUMO

It is well established that lncRNAs are aberrantly expressed in cancer where they have been shown to act as oncogenes or tumor suppressors. RNA profiling of 314 colorectal adenomas/adenocarcinomas and 292 adjacent normal colon mucosa samples using RNA-sequencing demonstrated that the snoRNA host gene 16 (SNHG16) is significantly up-regulated in adenomas and all stages of CRC. SNHG16 expression was positively correlated to the expression of Wnt-regulated transcription factors, including ASCL2, ETS2, and c-Myc. In vitro abrogation of Wnt signaling in CRC cells reduced the expression of SNHG16 indicating that SNHG16 is regulated by the Wnt pathway. Silencing of SNHG16 resulted in reduced viability, increased apoptotic cell death and impaired cell migration. The SNHG16 silencing particularly affected expression of genes involved in lipid metabolism. A connection between SNHG16 and genes involved in lipid metabolism was also observed in clinical tumors. Argonaute CrossLinking and ImmunoPrecipitation (AGO-CLIP) demonstrated that SNHG16 heavily binds AGO and has 27 AGO/miRNA target sites along its length, indicating that SNHG16 may act as a competing endogenous RNA (ceRNA) "sponging" miRNAs off their cognate targets. Most interestingly, half of the miRNA families with high confidence targets on SNHG16 also target the 3'UTR of Stearoyl-CoA Desaturase (SCD). SCD is involved in lipid metabolism and is down-regulated upon SNHG16 silencing. In conclusion, up-regulation of SNHG16 is a frequent event in CRC, likely caused by deregulated Wnt signaling. In vitro analyses demonstrate that SNHG16 may play an oncogenic role in CRC and that it affects genes involved in lipid metabolism, possible through ceRNA related mechanisms.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Metabolismo dos Lipídeos/genética , RNA Longo não Codificante/metabolismo , Via de Sinalização Wnt/genética , Apoptose/genética , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Neoplasias Colorretais/patologia , Citoplasma/metabolismo , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Motivos de Nucleotídeos/genética , Polirribossomos/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante/genética , RNA Nucleolar Pequeno/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima/genética
12.
Nature ; 512(7512): 87-90, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25079323

RESUMO

The cis-regulatory effects responsible for cancer development have not been as extensively studied as the perturbations of the protein coding genome in tumorigenesis. To better characterize colorectal cancer (CRC) development we conducted an RNA-sequencing experiment of 103 matched tumour and normal colon mucosa samples from Danish CRC patients, 90 of which were germline-genotyped. By investigating allele-specific expression (ASE) we show that the germline genotypes remain important determinants of allelic gene expression in tumours. Using the changes in ASE in matched pairs of samples we discover 71 genes with excess of somatic cis-regulatory effects in CRC, suggesting a cancer driver role. We correlate genotypes and gene expression to identify expression quantitative trait loci (eQTLs) and find 1,693 and 948 eQTLs in normal samples and tumours, respectively. We estimate that 36% of the tumour eQTLs are exclusive to CRC and show that this specificity is partially driven by increased expression of specific transcription factors and changes in methylation patterns. We show that tumour-specific eQTLs are more enriched for low CRC genome-wide association study (GWAS) P values than shared eQTLs, which suggests that some of the GWAS variants are tumour specific regulatory variants. Importantly, tumour-specific eQTL genes also accumulate more somatic mutations when compared to the shared eQTL genes, raising the possibility that they constitute germline-derived cancer regulatory drivers. Collectively the integration of genome and the transcriptome reveals a substantial number of putative somatic and germline cis-regulatory cancer changes that may have a role in tumorigenesis.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica/genética , Sequências Reguladoras de Ácido Nucleico/genética , Alelos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/patologia , Metilação de DNA , Perfilação da Expressão Gênica , Genes Neoplásicos , Estudo de Associação Genômica Ampla , Genótipo , Mutação em Linhagem Germinativa/genética , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Locos de Características Quantitativas/genética , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo , Transcriptoma/genética
13.
Int J Cancer ; 132(10): 2303-15, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23115050

RESUMO

Gene silencing by DNA hypermethylation of CpG islands is a well-characterized phenomenon in cancer. The effect of hypomethylation in particular of non-CpG island genes is much less well described. By genome-wide screening, we identified 105 genes in microsatellite stable (MSS) colorectal adenocarcinomas with an inverse correlation (Spearman's ρ ≤ -0.40) between methylation and expression. Of these, 35 (33%) were hypomethylated non-CpG island genes and two of them, APOLD1 (Spearman's ρ = -0.82) and SRPX2 (Spearman's ρ = -0.80) were selected for further analyses. Hypomethylation of both genes were localized events not shared by adjacent genes. A set of 662 FFPE DNA samples not only confirmed that APOLD1 and SRPX2 are hypomethylated in CRC but also revealed hypomethylation to be significantly (p < 0.01) associated with tumors being localized in the left side, CpG island methylator phenotype negative, MSS, BRAF wt, undifferentiated and of adenocarcinoma histosubtype. Demethylation experiments supported SRPX2 being epigenetically regulated via DNA methylation, whereas other mechanisms in addition to DNA methylation seem to be involved in the regulation of APOLD1. We further identified miR-149 as a potential novel post-transcriptional regulator of SRPX2. In carcinoma tissue, miR-149 was downregulated and inversely correlated to SRPX2 (ρ = -0.77). Furthermore, ectopic expression of miR-149 significantly reduced SRPX2 transcript levels. Our study highlights that in colorectal tumors, hypomethylation of non-CpG island-associated promoters deregulate gene expression nearly as frequent as do CpG-island hypermethylation. The hypomethylation of SRPX2 is focal and not part of a large block. Furthermore, it often translates to an increased expression level, which may be modulated by miR-149.


Assuntos
Adenocarcinoma/genética , Neoplasias Colorretais/genética , Metilação de DNA , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Regiões Promotoras Genéticas , Adenoma/genética , Apolipoproteínas/metabolismo , Ilhas de CpG , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Membrana , Instabilidade de Microssatélites , Proteínas de Neoplasias , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica , Transcriptoma
14.
Hum Mol Genet ; 17(6): 806-14, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18048406

RESUMO

Genome-wide association studies have identified a region on chromosome 9p that is associated with coronary artery disease (CAD). The region is also associated with type 2 diabetes (T2D), a risk factor for CAD, although different SNPs were reported to be associated to each disease in separate studies. We have undertaken a case-control study in 4251 CAD cases and 4443 controls in four European populations using previously reported ('literature') and tagging SNPs. We replicated the literature SNPs (P = 8x10(-13); OR = 1.29; 95% CI: 1.20-1.38) and showed that the strong consistent association detected by these SNPs is a consequence of a 'yin-yang' haplotype pattern spanning 53 kb. There was no evidence of additional CAD susceptibility alleles over the major risk haplotype. CAD patients without myocardial infarction (MI) showed a trend towards stronger association than MI patients. The CAD susceptibility conferred by this locus did not differ by sex, age, smoking, obesity, hypertension or diabetes. A simultaneous test of CAD and diabetes susceptibility with CAD and T2D-associated SNPs indicated that these associations were independent of each other. Moreover, this region was not associated with differences in plasma levels of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, fibrinogen, albumin, uric acid, bilirubin or homocysteine, although the CAD-high-risk allele was paradoxically associated with lower triglyceride levels. A large antisense non-coding RNA gene (ANRIL) collocates with the high-risk haplotype, is expressed in tissues and cell types that are affected by atherosclerosis and is a prime candidate gene for the chromosome 9p CAD locus.


Assuntos
Cromossomos Humanos Par 9 , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , RNA não Traduzido/genética , Sequência de Bases , Primers do DNA , Haplótipos , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA