Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 230(Supplement_2): S128-S140, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255398

RESUMO

BACKGROUND: Emerging evidence suggests that viral infections may contribute to Alzheimer's disease (AD) onset and/or progression. However, the extent of their involvement and the mechanisms through which specific viruses increase AD susceptibility risk remain elusive. METHODS: We used an integrative systems bioinformatics approach to identify viral-mediated pathogenic mechanisms, by which Herpes Simplex Virus 1 (HSV-1), Human Cytomegalovirus (HCMV), Epstein-Barr virus (EBV), Kaposi Sarcoma-associated Herpesvirus (KSHV), Hepatitis B Virus (HBV), Hepatitis C Virus (HCV), Influenza A Virus (IAV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) could facilitate AD pathogenesis via virus-host protein-protein interactions (PPIs). We also explored potential synergistic pathogenic effects resulting from herpesvirus reactivation (HSV-1, HCMV, and EBV) during acute SARS-CoV-2 infection, potentially increasing AD susceptibility. RESULTS: Herpesviridae members (HSV-1, EBV, KSHV, HCMV) impact AD-related processes like amyloid-ß (Aß) formation, neuronal death, and autophagy. Hepatitis viruses (HBV, HCV) influence processes crucial for cellular homeostasis and dysfunction, they also affect microglia activation via virus-host PPIs. Reactivation of HCMV during SARS-CoV-2 infection could potentially foster a lethal interplay of neurodegeneration, via synergistic pathogenic effects on AD-related processes like response to unfolded protein, regulation of autophagy, response to oxidative stress, and Aß formation. CONCLUSIONS: These findings underscore the complex link between viral infections and AD development. Viruses impact AD-related processes through shared and distinct mechanisms, potentially influencing variations in AD susceptibility.


Assuntos
Doença de Alzheimer , Biologia Computacional , SARS-CoV-2 , Viroses , Humanos , Doença de Alzheimer/virologia , Doença de Alzheimer/metabolismo , Biologia Computacional/métodos , Viroses/virologia , SARS-CoV-2/fisiologia , COVID-19/virologia , Herpesviridae/genética , Herpesviridae/fisiologia
2.
Front Endocrinol (Lausanne) ; 15: 1345498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689734

RESUMO

Background: The hippocampus, vital for memory and learning, is among the first brain regions affected in Alzheimer's Disease (AD) and exhibits adult neurogenesis. Women face twice the risk of developing AD compare to men, making it crucial to understand sex differences in hippocampal function for comprehending AD susceptibility. Methods: We conducted a comprehensive analysis of bulk mRNA postmortem samples from the whole hippocampus (GSE48350, GSE5281) and its CA1 and CA3 subfields (GSE29378). Our aim was to perform a comparative molecular signatures analysis, investigating sex-specific differences and similarities in the hippocampus and its subfields in AD. This involved comparing the gene expression profiles among: (a) male controls (M-controls) vs. female controls (F-controls), (b) females with AD (F-AD) vs. F-controls, (c) males with AD (M-AD) vs. M-controls, and (d) M-AD vs. F-AD. Furthermore, we identified AD susceptibility genes interacting with key targets of menopause hormone replacement drugs, specifically the ESR1 and ESR2 genes, along with GPER1. Results: The hippocampal analysis revealed contrasting patterns between M-AD vs. M-controls and F-AD vs. F-controls, as well as M-controls vs. F-controls. Notably, BACE1, a key enzyme linked to amyloid-beta production in AD pathology, was found to be upregulated in M-controls compared to F-controls in both CA1 and CA3 hippocampal subfields. In M-AD vs. M-controls, the GABAergic synapse was downregulated, and the Estrogen signaling pathway was upregulated in both subfields, unlike in F-AD vs. F-controls. Analysis of the whole hippocampus also revealed upregulation of the GABAergic synapse in F-AD vs. F-controls. While direct comparison of M-AD vs. F-AD, revealed a small upregulation of the ESR1 gene in the CA1 subfield of males. Conversely, F-AD vs. F-controls exhibited downregulation of the Dopaminergic synapse in both subfields, while the Calcium signaling pathway showed mixed regulation, being upregulated in CA1 but downregulated in CA3, unlike in M-AD vs. M-controls. The upregulated Estrogen signaling pathway in M-AD, suggests a compensatory response to neurodegenerative specifically in males with AD. Our results also identified potential susceptibility genes interacting with ESR1 and ESR2, including MAPK1, IGF1, AKT1, TP53 and CD44. Conclusion: These findings underscore the importance of sex-specific disease mechanisms in AD pathogenesis. Region-specific analysis offers a more detailed examination of localized changes in the hippocampus, enabling to capture sex-specific molecular patterns in AD susceptibility and progression.


Assuntos
Doença de Alzheimer , Perfilação da Expressão Gênica , Hipocampo , Caracteres Sexuais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Masculino , Feminino , Hipocampo/metabolismo , Transcriptoma , Idoso , Fatores Sexuais , Estudos de Casos e Controles
3.
Front Neurosci ; 18: 1348551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586193

RESUMO

Estradiol, the most potent and prevalent member of the estrogen class of steroid hormones and is expressed in both sexes. Functioning as a neuroactive steroid, it plays a crucial role in modulating neurotransmitter systems affecting neuronal circuits and brain functions including learning and memory, reward and sexual behaviors. These neurotransmitter systems encompass the serotonergic, dopaminergic, and glutamatergic signaling pathways. Consequently, this review examines the pivotal role of estradiol and its receptors in the regulation of these neurotransmitter systems in the brain. Through a comprehensive analysis of current literature, we investigate the multifaceted effects of estradiol on key neurotransmitter signaling systems, namely serotonin, dopamine, and glutamate. Findings from rodent models illuminate the impact of hormone manipulations, such as gonadectomy, on the regulation of neuronal brain circuits, providing valuable insights into the connection between hormonal fluctuations and neurotransmitter regulation. Estradiol exerts its effects by binding to three estrogen receptors: estrogen receptor alpha (ERα), estrogen receptor beta (ERß), and G protein-coupled receptor (GPER). Thus, this review explores the promising outcomes observed with estradiol and estrogen receptor agonists administration in both gonadectomized and/or genetically knockout rodents, suggesting potential therapeutic avenues. Despite limited human studies on this topic, the findings underscore the significance of translational research in bridging the gap between preclinical findings and clinical applications. This approach offers valuable insights into the complex relationship between estradiol and neurotransmitter systems. The integration of evidence from neurotransmitter systems and receptor-specific effects not only enhances our understanding of the neurobiological basis of physiological brain functioning but also provides a comprehensive framework for the understanding of possible pathophysiological mechanisms resulting to disease states. By unraveling the complexities of estradiol's impact on neurotransmitter regulation, this review contributes to advancing the field and lays the groundwork for future research aimed at refining understanding of the relationship between estradiol and neuronal circuits as well as their involvement in brain disorders.

4.
Viruses ; 14(10)2022 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-36298824

RESUMO

Coronavirus Disease 2019 (COVID-19) is associated with increased incidence of neurological diseases and neuropsychiatric disorders after infection, but how it contributes to their development remains under investigation. Here, we investigate the possible relationship between COVID-19 and the development of ten neurological disorders and three neuropsychiatric disorders by exploring two pathological mechanisms: (i) dysregulation of host biological processes via virus-host protein-protein interactions (PPIs), and (ii) autoreactivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epitopes with host "self" proteins via molecular mimicry. We also identify potential genetic risk factors which in combination with SARS-CoV-2 infection might lead to disease development. Our analysis indicated that neurodegenerative diseases (NDs) have a higher number of disease-associated biological processes that can be modulated by SARS-CoV-2 via virus-host PPIs than neuropsychiatric disorders. The sequence similarity analysis indicated the presence of several matching 5-mer and/or 6-mer linear motifs between SARS-CoV-2 epitopes with autoreactive epitopes found in Alzheimer's Disease (AD), Parkinson's Disease (PD), Myasthenia Gravis (MG) and Multiple Sclerosis (MS). The results include autoreactive epitopes that recognize amyloid-beta precursor protein (APP), microtubule-associated protein tau (MAPT), acetylcholine receptors, glial fibrillary acidic protein (GFAP), neurofilament light polypeptide (NfL) and major myelin proteins. Altogether, our results suggest that there might be an increased risk for the development of NDs after COVID-19 both via autoreactivity and virus-host PPIs.


Assuntos
COVID-19 , Doenças Neurodegenerativas , Humanos , Biologia Computacional , Epitopos , Proteína Glial Fibrilar Ácida , Proteínas Associadas aos Microtúbulos , Doenças Neurodegenerativas/etiologia , Receptores Colinérgicos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA