Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35563460

RESUMO

The radiosensitization of tumor cells is one of the promising approaches for enhancing radiation damage to cancer cells and limiting radiation effects on normal tissue. In this study, we performed a comprehensive screening of radiosensitization targets in human lung cancer cell line A549 using an shRNA library and identified apolipoprotein B mRNA editing enzyme catalytic subunit 3G (APOBEC3G: A3G) as a candidate target. APOBEC3G is an innate restriction factor that inhibits HIV-1 infection as a cytidine deaminase. APOBEC3G knockdown with siRNA showed an increased radiosensitivity in several cancer cell lines, including pancreatic cancer MIAPaCa2 cells and lung cancer A549 cells. Cell cycle analysis revealed that APOBEC3G knockdown increased S-phase arrest in MIAPaCa2 and G2/M arrest in A549 cells after γ-irradiation. DNA double-strand break marker γH2AX level was increased in APOBEC3G-knocked-down MIAPaCa2 cells after γ-irradiation. Using a xenograft model of A549 in mice, enhanced radiosensitivity by a combination of X-ray irradiation and APOBEC3G knockdown was observed. These results suggest that the functional inhibition of APOBEC3G sensitizes cancer cells to radiation by attenuating the activation of the DNA repair pathway, suggesting that APOBEC3G could be useful as a target for the radiosensitization of cancer therapy.


Assuntos
Desaminase APOBEC-3G , Raios gama , Tolerância a Radiação , Desaminase APOBEC-3G/antagonistas & inibidores , Desaminase APOBEC-3G/farmacologia , Animais , Apoptose , Linhagem Celular Tumoral , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Raios gama/uso terapêutico , Humanos , Neoplasias Pulmonares/radioterapia , Camundongos , Tolerância a Radiação/genética , Tolerância a Radiação/fisiologia
2.
Biology (Basel) ; 11(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35336794

RESUMO

Boron neutron capture therapy (BNCT) is a non-invasive therapeutic technique for treating malignant tumors, however, methods to evaluate its therapeutic efficacy and adverse reactions are lacking. High mobility group box 1 (HMGB1) is an inflammatory molecule released during cell death. Therefore, we aimed to investigate HMGB1 as a biomarker for BNCT response, by examining the early responses of tumor cells to 10B-boronophenylalanine (BPA)-based BNCT in the Kyoto University Nuclear Reactor. Extracellular HMGB1 release was significantly increased in human squamous carcinoma SAS and melanoma A375 cells 24 h after neutron irradiation but not after γ-irradiation. At 3 days post-BPA-based BNCT irradiation in a SAS xenograft mouse model, plasma HMGB1 levels were higher than those in the non-irradiation control, and HMGB1 was detected in both nuclei and cytoplasm in tumor cells. Additionally, increased plasma HMGB1 levels post-BNCT irradiation were detected even when tumors decreased in size. Collectively, these results indicate that the extracellular HMGB1 release occurs at an early stage and is persistent when tumors are reduced in size; therefore, it is a potential biomarker for evaluating the therapeutic response during BNCT.

3.
Glob Health Med ; 3(4): 226-235, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34532603

RESUMO

Identifying patients resistant to cisplatin treatment is expected to improve cisplatin-based chemotherapy for various types of cancers. Excision repair cross-complementing group 1 (ERCC1) is involved in several repair processes of cisplatin-induced DNA crosslinks. ERCC1 overexpression is reported as a candidate prognostic factor and considered to cause cisplatin resistance in major solid cancers. However, anti-ERCC1 antibodies capable of evaluating expression levels of ERCC1 in clinical specimens were not fully optimized. A mouse monoclonal antibody against human ERCC1 was generated in this study. The developed antibody 9D11 specifically detected isoforms of 201, 202, 203 but not 204, which lacks the exon 3 coding region. To evaluate the diagnostic usefulness of this antibody, we have focused on gastric cancer because it is one of the major cancers in Japan. When ERCC1 expression was analyzed in seventeen kinds of human gastric cancer cell lines, all the cell lines were found to express either 201, 202, and/or 203 as major isoforms of ERCC1, but not 204 by Western blotting analysis. Immunohistochemical staining showed that ERCC1 protein was exclusively detected in nuclei of the cells and a moderate level of constant positivity was observed in nuclei of vascular endothelial cells. It showed a clear staining pattern in clinical specimens of gastric cancers. Antibody 9D11 may thus be useful for estimating expression levels of ERCC1 in clinical specimens.

4.
Medicines (Basel) ; 8(7)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34357151

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) promotes dendritic cell differentiation from precursors, and consequently, enhances the antigen presentation process and adaptive immune responses. With such functions, GM-CSF has been used as immunotherapy in combination with radiotherapy for cancer treatment to augment the survival and activity of immune cells. However, an immune-suppressive tumor microenvironment may cause anergy of T cells. It has also been reported that GM-CSF contributes to the development of myeloid-derived suppressor cells from the precursors. In this study, to analyze the combined effect of GM-CSF and released factors from cancer cells after gamma-ray irradiation on bone marrow cell differentiation and dynamics, we established an in vitro culture system using mouse bone marrow cells, GM-CSF, and conditioned medium from gamma ray irradiated mouse melanoma B16 cells at 24 Gy. We analyzed the gene expression changes of the bone marrow-derived cells on day 6. The results showed that GM-CSF dose-dependently enhanced the differentiation of macrophages from bone marrow cells, their antigen-presenting function and polarization to type I. The results implied the induced macrophages from the bone marrow may potentially contribute to tumor immune responses in a systemic manner when GM-CSF is boosted during photon-beam radiation therapy.

5.
Cancers (Basel) ; 12(4)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344695

RESUMO

PolyADP-ribosylation is a post-translational modification of proteins, and poly(ADP-ribose) (PAR) polymerase (PARP) family proteins synthesize PAR using NAD as a substrate. Poly(ADP-ribose) glycohydrolase (PARG) functions as the main enzyme for the degradation of PAR. In this study, we investigated the effects of Parg deficiency on tumorigenesis and therapeutic efficacy of DNA damaging agents, using mouse ES cell-derived tumor models. To examine the effects of Parg deficiency on tumorigenesis, Parg+/+ and Parg-/- ES cells were subcutaneously injected into nude mice. The results showed that Parg deficiency delays early onset of tumorigenesis from ES cells. All the tumors were phenotypically similar to teratocarcinoma and microscopic findings indicated that differentiation spectrum was similar between the Parg genotypes. The augmented anti-tumor therapeutic effects of X-irradiation were observed under Parg deficiency. These results suggest that Parg deficiency suppresses early stages of tumorigenesis and that Parg inhibition, in combination with DNA damaging agents, may efficiently control tumor growth in particular types of germ cell tumors.

6.
Cancer Res ; 79(15): 3851-3861, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31142510

RESUMO

Poly (ADP-ribose) glycohydrolase (PARG) is the main enzyme responsible for catabolism of poly (ADP-ribose) (PAR), synthesized by PARP. PARG dysfunction sensitizes certain cancer cells to alkylating agents and cisplatin by perturbing the DNA damage response. The gene mutations that sensitize cancer cells to PARG dysfunction-induced death remain to be identified. Here, we performed a comprehensive analysis of synthetic lethal genes using inducible PARG knockdown cells and identified dual specificity phosphatase 22 (DUSP22) as a novel synthetic lethal gene related to PARG dysfunction. DUSP22 is considered a tumor suppressor and its mutation has been frequently reported in lung, colon, and other tumors. In the absence of DNA damage, dual depletion of PARG and DUSP22 in HeLa and lung cancer A549 cells reduced survival compared with single-knockdown counterparts. Dual depletion of PARG and DUSP22 increased the apoptotic sub-G1 fraction and upregulated PUMA in lung cancer A549, PC14, and SBC5 cells, and inhibited the PI3K/AKT/mTOR pathway in A549 cells, suggesting that dual depletion of PARG and DUSP22 induced apoptosis by upregulating PUMA and suppressing the PI3K/AKT/mTOR pathway. Consistently, the growth of tumors derived from double knockdown A549 cells was slower compared with those derived from control siRNA-transfected cells. Taken together, these results indicate that DUSP22 deficiency exerts a synthetic lethal effect when combined with PARG dysfunction, suggesting that DUSP22 dysfunction could be a useful biomarker for cancer therapy using PARG inhibitors. SIGNIFICANCE: This study identified DUSP22 as a novel synthetic lethal gene under the condition of PARG dysfunction and elucidated the mechanism of synthetic lethality in lung cancer cells.


Assuntos
Glicosídeo Hidrolases/efeitos adversos , Neoplasias Pulmonares/genética , Animais , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA