Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Surg ; 8: 627332, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681282

RESUMO

Background: Ex situ donor liver machine perfusion is a promising tool to assess organ viability prior to transplantation and platform to investigate novel therapeutic interventions. However, the wide variability in donor and graft characteristics between individual donor livers limits the comparability of results. We investigated the hypothesis that the development of a split liver ex situ machine perfusion protocol provides the ideal comparative controls in the investigation of machine perfusion techniques and therapeutic interventions, thus leading to more comparable results. Methods: Four discarded human donor livers were surgically split following identification and separation of right and left inflow and outflow vessels. Each lobe, on separate perfusion machines, was subjected to normothermic perfusion using an artificial hemoglobin-based oxygen carrier solution for 6 h. Metabolic parameters as well as hepatic artery and portal vein perfusion parameters monitored. Results: Trends in hepatic artery and portal vein flows showed a general increase in both lobes throughout each perfusion experiment, even when normalized for tissue weight. Progressive decreases in perfusate lactate and glucose levels exhibited comparable trends in between lobes. Conclusion: Our results demonstrate comparability between right and left lobes when simultaneously subjected to normothermic machine perfusion. In the pre-clinical setting, this model provides the ideal comparative controls in the investigation of therapeutic interventions.

2.
Front Immunol ; 11: 565518, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072105

RESUMO

Regulatory T cells (Tregs) are crucial in maintaining tolerance. Hence, Treg immunotherapy is an attractive therapeutic option in autoimmune diseases and organ transplantations. Currently, autoimmune diseases do not have a curative treatment and transplant recipients require life-long immunosuppression to prevent graft rejection. There has been significant progress in understanding polyclonal and antigen-specific Treg biology over the last decade. Clinical trials with good manufacturing practice (GMP) Treg cells have demonstrated safety and early efficacy of Treg therapy. GMP Treg cells can also be tracked following infusion. In order to improve efficacy of Tregs immunotherapy, it is necessary that Tregs migrate, survive and function at the specific target tissue. Application of antigen specific Tregs and maintaining cells' suppressive function and survival with low dose interleukin-2 (IL-2) will enhance the efficacy and longevity of infused GMP-grade Tregs. Notably, stability of Tregs in the local tissue can be manipulated by understanding the microenvironment. With the recent advances in GMP-grade Tregs isolation and antigen-specific chimeric antigen receptor (CAR)-Tregs development will allow functionally superior cells to migrate to the target organ. Thus, Tregs immunotherapy may be a promising option for patients with autoimmune diseases and organ transplantations in near future.


Assuntos
Doenças Autoimunes/terapia , Rejeição de Enxerto/prevenção & controle , Terapia de Imunossupressão/métodos , Imunoterapia Adotiva/métodos , Transplante de Fígado/métodos , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Vesículas Extracelulares/imunologia , Rejeição de Enxerto/imunologia , Humanos , Tolerância Imunológica , Interleucina-2/uso terapêutico
3.
J Leukoc Biol ; 108(2): 659-671, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32349179

RESUMO

Primary biliary cholangitis (PBC) is a cholestatic liver disease characterized by the destruction of the small and medium bile ducts. Its pathogenesis is still unknown. Despite the genome wide association study findings, the therapies targeting the cytokines pathway, tested so far, have failed. The concept of the biliary epithelium as a key player of the PBC pathogenesis has emerged over the last few years. It is now well accepted that the biliary epithelial cells (BECs) actively participate to the genesis of the damage. The chronic stimulation of BECs via microbes and bile changes the cell phenotype toward an active state, which, across the production of proinflammatory mediators, can recruit, retain, and activate immune cells. The consequent immune system activation can in turn damage BECs. Thus, the crosstalk between both innate and adaptive immune cells and the biliary epithelium creates a paracrine loop responsible for the disease progression. In this review, we summarize the evidence provided in literature about the role of BECs and the immune system in the pathogenesis of PBC. We also dissect the relationship between the immune system and the BECs, focusing on the unanswered questions and the future potential directions of the translational research and the cellular therapy in this area.


Assuntos
Ductos Biliares Intra-Hepáticos/imunologia , Ductos Biliares Intra-Hepáticos/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Cirrose Hepática Biliar/etiologia , Cirrose Hepática Biliar/metabolismo , Animais , Autoimunidade , Ductos Biliares Intra-Hepáticos/patologia , Suscetibilidade a Doenças/imunologia , Humanos , Tolerância Imunológica , Imunidade Inata , Cirrose Hepática Biliar/patologia , Especificidade de Órgãos/imunologia
4.
J Immunol ; 203(5): 1151-1159, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31391236

RESUMO

There is no effective treatment for autoimmune biliary diseases. Therefore, understanding their immunopathology is crucial. The biliary epithelial cells (BEC), expressing TLR-4, are constantly exposed to gut microbes and bacterial wall LPS, and in settings of inflammation, the immune infiltrate is dense within the peribiliary region of human liver. By dual immunohistochemistry, we affirm human intrahepatic T cell infiltrate includes CCR6+CD4+ and AhR+CD4+ T cells with potential for plasticity to Th17 phenotype. Mechanistically, we demonstrate that Th1 and Th17 inflammatory cytokines and LPS enhance human primary BEC release of the CCR6 ligand CCL20 and BEC secretion of Th17-polarizing cytokines IL-6 and IL-1ß. Cell culture assays with human BEC secretome showed that secretome polarizes CD4 T cells toward a Th17 phenotype and supports the survival of Th17 cells. BEC secretome did not promote Th1 cell generation. Additionally, we give evidence for a mutually beneficial feedback of the type 17 cell infiltrate on BEC, showing that treatment with type 17 cytokines increases BEC proliferation, as monitored by Ki67 and activation of JAK2-STAT3 signaling. This study identifies human BEC as active players in determining the nature of the intrahepatic immune microenvironment. In settings of inflammation and/or infection, biliary epithelium establishes a prominent peribiliary type 17 infiltrate via recruitment and retention and enhances polarization of intrahepatic CD4 cells toward Th17 cells via type 17 cytokines, and, reciprocally, Th17 cells promote BEC proliferation for biliary regeneration. Altogether, we provide new insight into cross-talk between Th17 lymphocytes and human primary biliary epithelium in biliary regenerative pathologies.


Assuntos
Ductos Biliares/patologia , Comunicação Celular/fisiologia , Células Epiteliais/fisiologia , Hepatopatias/imunologia , Células Th17/fisiologia , Proliferação de Células , Células Cultivadas , Humanos , Interleucina-17/farmacologia , Lipopolissacarídeos/farmacologia , Hepatopatias/patologia , Receptores de Hidrocarboneto Arílico/fisiologia , Receptores CCR6/fisiologia
5.
PLoS One ; 12(12): e0188649, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29261670

RESUMO

INTRODUCTION: Innate lymphoid cells (ILC) have been implicated in the initiation of inflammation and fibrosis in mice. However, ILC have not been characterized in inflamed human liver tissue. METHODS: Human intrahepatic lymphocytes were isolated by mechanical digestion and phenotyped by flow cytometry. Conditioned medium from cultures of primary human biliary epithelial cells, stellate cells, fibroblasts and inflamed human liver tissue was used to model the effects of the inflammatory liver environment of ILC phenotype and function. RESULTS: All three ILC subsets were present in the human liver, with the ILC1 (CRTH2negCD117neg) subset constituting around 70% of intrahepatic ILCs. Both NCRpos (NKp44+) and NCRneg ILC3 (CRTH2negCD117pos) subsets were also detected. ILC2 (CRTH2pos) frequency correlated with disease severity measured by model of end stage liver disease (MELD) scoring leading us to study this subset in more detail. ILC2 displayed a tissue resident CD69+ CD161++ phenotype and expressed chemokine receptor CCR6 allowing them to respond to CCL20 secreted by cholangiocytes and stellate cells. ILC2 expressed integrins VLA-5 and VLA-6 and the IL-2 and IL-7 cytokine receptors CD25 and CD127 although IL-2 and IL-7 were barely detectable in inflamed liver tissue. Although biliary epithelial cells secrete IL-33, intrahepatic ILC2 had low expression of the ST2 receptor. Intrahepatic ILC2 secreted the immunoregulatory and repair cytokines IL-13 and amphiregulin. CONCLUSIONS: Intrahepatic ILC2 express receptors allowing them to be recruited to bile ducts in inflamed portal tracts. Their frequencies increased with worsening liver function. Their secretion of IL-13 and amphiregulin suggests they may be recruited to promote resolution and repair and thereby they may contribute to ongoing fibrogenesis in liver disease.


Assuntos
Anfirregulina/metabolismo , Doença Hepática Terminal/imunologia , Imunidade Inata , Interleucina-13/metabolismo , Fígado/metabolismo , Linfócitos/metabolismo , Modelos Biológicos , Células Epiteliais/metabolismo , Humanos , Inflamação/patologia , Integrinas/genética , Integrinas/metabolismo , Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Interleucina-7/metabolismo , Fígado/patologia , Contagem de Linfócitos , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Fenótipo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo
6.
Sci Rep ; 6: 35917, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27779207

RESUMO

Mutations in the hepatitis B virus (HBV) core promoter (CP) have been shown to be associated with hepatocellular carcinoma (HCC). The CP region overlaps HBV X gene, which activates AKT to regulate hepatocyte survival. However, the cooperation between these two cascades in HCC progression remains poorly understood. Here, we assayed virological factors and AKT expression in liver tissues from 56 HCC patients with better prognoses (BHCC, ≥5-year survival) and 58 with poor prognoses (PHCC, <5-year survival) after partial liver resection. Results showed double mutation A1762T/G1764A (TA) combined with other mutation(s) (TACO) in HBV genome and phosphorylated AKT (pAKT) were more common in PHCC than BHCC. TACO and pAKT levels correlated with proliferation and microvascularization but inversely correlated with apoptosis in HCC samples. These were more pronounced when TACO and pAKT co-expressed. Levels of p21 and p27 were decreased in TACO or pAKT overexpressing HCC due to SKP2 upregulation. Levels of E2F1 and both mRNA and protein of SKP2 were increased in TACO expressing HCC. Levels of 4EBP1/2 decreased and SKP2 mRNA level remained constant in pAKT-overexpressing HCC. Therefore, TACO and AKT are two independent predictors of postoperative survival in HCC. Their co-target, SKP2 may be a diagnostic or therapeutic marker.


Assuntos
Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Regulação da Expressão Gênica , Vírus da Hepatite B/genética , Proteína Oncogênica v-akt/metabolismo , Regiões Promotoras Genéticas , Proteínas Quinases Associadas a Fase S/metabolismo , Progressão da Doença , Humanos , Fígado/patologia , Fígado/virologia , Mutação
7.
Front Immunol ; 7: 334, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27656181

RESUMO

The increasing demand for liver transplantation and the decline in donor organs has highlighted the need for alternative novel therapies to prevent chronic active hepatitis, which eventually leads to liver cirrhosis and liver cancer. Liver histology of chronic hepatitis is composed of both effector and regulatory lymphocytes. The human liver contains different subsets of effector lymphocytes that are kept in check by a subpopulation of T cells known as Regulatory T cells (Treg). The balance of effector and regulatory lymphocytes generally determines the outcome of hepatic inflammation: resolution, fulminant hepatitis, or chronic active hepatitis. Thus, maintaining and adjusting this balance is crucial in immunological manipulation of liver diseases. One of the options to restore this balance is to enrich Treg in the liver disease patients. Advances in the knowledge of Treg biology and development of clinical grade isolation reagents, cell sorting equipment, and good manufacturing practice facilities have paved the way to apply Treg cells as a potential therapy to restore peripheral self-tolerance in autoimmune liver diseases (AILD), chronic rejection, and posttransplantation. Past and on-going studies have applied Treg in type-1 diabetes mellitus, systemic lupus erythematosus, graft versus host diseases, and solid organ transplantations. There have not been any new therapies for the AILD for more than three decades; thus, the clinical potential for the application of autologous Treg cell therapy to treat autoimmune liver disease is an attractive and novel option. However, it is fundamental to understand the deep immunology, genetic profiles, biology, homing behavior, and microenvironment of Treg before applying the cells to the patients.

8.
J Hepatol ; 64(5): 1190-1193, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26812071

RESUMO

Background & Aims Autoimmune hepatitis (AIH), an immune-mediated liver disease, originates as a consequence of interacting genetic and environmental risk factors. Treatment remains non-specific and prone to side effects. Deficiencies in regulatory T cell (Treg) function are hypothesized to contribute to the pathogenesis of AIH. Methods We describe an adult patient who presented with AIH in the context of monocytopenia. The patient was characterized by GATA2 gene sequencing, flow cytometry of peripheral blood for leucocyte subsets, ELISA for serum Flt-3 ligand, and immunohistochemistry of liver biopsy tissue. Results Sequencing confirmed a GATA2 mutation. Peripheral Treg were absent in the context of a preserved total T cell count. Immunostaining for the Treg transcription factor FOXP3 was reduced in liver tissue as compared to a control AIH specimen. There were marked deficiencies in multiple antigen-presenting cell subsets and Flt-3 ligand was elevated. These findings are consistent with previous reports of GATA2 dysfunction. Conclusions The association of a GATA2 mutation with AIH is previously unrecognized. GATA2 encodes a hematopoietic cell transcription factor, and mutations may manifest as monocytopenia, dendritic and B cell deficiencies, myelodysplasia, and immunodeficiency. Tregs may be depleted as in this case. Our findings provide support for the role of Tregs in AIH, complement reports of other deficiencies in T cell regulation causing AIH-like syndromes, and support the rationale of attempting to modulate the Treg axis for the therapeutic benefit of AIH patients.


Assuntos
DNA/genética , Fator de Transcrição GATA2/genética , Hepatite Autoimune/genética , Fígado/patologia , Mutação , Linfócitos T Reguladores/imunologia , Adulto , Células Apresentadoras de Antígenos , Análise Mutacional de DNA , Feminino , Fator de Transcrição GATA2/metabolismo , Hepatite Autoimune/imunologia , Hepatite Autoimune/metabolismo , Humanos , Imuno-Histoquímica , Fígado/metabolismo , Proteínas de Membrana/metabolismo
9.
Biochim Biophys Acta ; 1862(1): 135-44, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26529285

RESUMO

INTRODUCTION: Liver fibrosis develops when hepatic stellate cells (HSC) are activated into collagen-producing myofibroblasts. In non-alcoholic steatohepatitis (NASH), the adipokine leptin is upregulated, and promotes liver fibrosis by directly activating HSC via the hedgehog pathway. We reported that hedgehog-regulated osteopontin (OPN) plays a key role in promoting liver fibrosis. Herein, we evaluated if OPN mediates leptin-profibrogenic effects in NASH. METHODS: Leptin-deficient (ob/ob) and wild-type (WT) mice were fed control or methionine-choline deficient (MCD) diet. Liver tissues were assessed by Sirius-red, OPN and αSMA IHC, and qRT-PCR for fibrogenic genes. In vitro, HSC with stable OPN (or control) knockdown were treated with recombinant (r)leptin and OPN-neutralizing or sham-aptamers. HSC response to OPN loss was assessed by wound healing assay. OPN-aptamers were also added to precision-cut liver slices (PCLS), and administered to MCD-fed WT (leptin-intact) mice to determine if OPN neutralization abrogated fibrogenesis. RESULTS: MCD-fed WT mice developed NASH-fibrosis, upregulated OPN, and accumulated αSMA+ cells. Conversely, MCD-fed ob/ob mice developed less fibrosis and accumulated fewer αSMA+ and OPN+ cells. In vitro, leptin-treated HSC upregulated OPN, αSMA, collagen 1α1 and TGFß mRNA by nearly 3-fold, but this effect was blunted by OPN loss. Inhibition of PI3K and transduction of dominant negative-Akt abrogated leptin-mediated OPN induction, while constitutive active-Akt upregulated OPN. Finally, OPN neutralization reduced leptin-mediated fibrogenesis in both PCLS and MCD-fed mice. CONCLUSION: OPN overexpression in NASH enhances leptin-mediated fibrogenesis via PI3K/Akt. OPN neutralization significantly reduces NASH fibrosis, reinforcing the potential utility of targeting OPN in the treatment of patients with advanced NASH.


Assuntos
Leptina/metabolismo , Cirrose Hepática/metabolismo , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Osteopontina/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Deleção de Genes , Hepatócitos/metabolismo , Hepatócitos/patologia , Leptina/genética , Fígado/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Osteopontina/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA