Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oral Dis ; 29(3): 1089-1101, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34743383

RESUMO

OBJECTIVE: Cherubism is a genetic disorder characterised by bilateral jawbone deformation. The associated jawbone lesions regress after puberty, whereas severe cases require surgical treatment. Although several drugs have been tested, fundamental treatment strategies for cherubism have not been established. The effectiveness of imatinib has recently been reported; however, its pharmaceutical mechanism remains unclear. In this study, we tested the effects of imatinib using a cherubism mouse model. METHODS: We used Sh3bp2 P416R cherubism mutant mice, which exhibit systemic organ inflammation and osteopenia. The effects of imatinib were determined using primary bone marrow-derived macrophages. Imatinib was administered intraperitoneally to the mice, and serum tumour necrosis factor-α (TNFα), organ inflammation and bone properties were examined. RESULTS: The cherubism mutant macrophages produced higher levels of TNFα in response to lipopolysaccharide compared to wild-type macrophages, and imatinib did not significantly suppress TNFα production. Although imatinib suppressed osteoclast formation in vitro, administering it in vivo did not suppress organ inflammation and osteopenia. CONCLUSION: The in vivo administration of imatinib had a minimal therapeutic impact in cherubism mutant mice. To establish better pharmaceutical interventions, it is necessary to integrate new findings from murine models with clinical data from patients with a definitive diagnosis of cherubism.


Assuntos
Doenças Ósseas Metabólicas , Querubismo , Camundongos , Animais , Querubismo/tratamento farmacológico , Querubismo/genética , Fator de Necrose Tumoral alfa/metabolismo , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Proteínas Adaptadoras de Transdução de Sinal/genética , Inflamação/patologia , Fenótipo
2.
PLoS One ; 17(11): e0277307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36395281

RESUMO

Cysteinyl leukotriene receptor 1 (CysLTR1) is a G protein-coupled receptor for the inflammatory lipid mediators cysteinyl leukotrienes, which are involved in smooth muscle constriction, vascular permeability, and macrophage chemokine release. The Cysltr1 gene encoding CysLTR1 is expressed in the macrophage lineage, including osteoclasts, and the CysLTR1 antagonist Montelukast has been shown to suppress the formation of osteoclasts. However, it currently remains unclear whether CysLTR1 is involved in osteoclast differentiation and bone loss. Therefore, to clarify the role of CysLTR1 in osteoclastogenesis and pathological bone loss, we herein generated CysLTR1 loss-of-function mutant mice by disrupting the cysltr1 gene using the CRISPR-Cas9 system. These mutant mice had a frameshift mutation resulting in a premature stop codon (Cysltr1 KO) or an in-frame mutation causing the deletion of the first extracellular loop (Cysltr1Δ105). Bone marrow macrophages (BMM) from these mutant mice lost the intracellular flux of calcium in response to leukotriene D4, indicating that these mutants completely lost the activity of CysLTR1 without triggering genetic compensation. However, disruption of the Cysltr1 gene did not suppress the formation of osteoclasts from BMM in vitro. We also demonstrated that the CysLTR1 antagonist Montelukast suppressed the formation of osteoclasts without functional CysLTR1. On the other hand, disruption of the Cysltr1 gene partially suppressed the formation of osteoclasts stimulated by leukotriene D4 and did not inhibit that by glutathione, functioning as a substrate in the synthesis of cysteinyl leukotrienes. Disruption of the Cysltr1 gene did not affect ovariectomy-induced osteoporosis or lipopolysaccharide-induced bone resorption. Collectively, these results suggest that the CysLT-CysLTR1 axis is dispensable for osteoclast differentiation in vitro and pathological bone loss, while the leukotriene D4-CysTR1 axis is sufficient to stimulate osteoclast formation. We concluded that the effects of glutathione and Montelukast on osteoclast formation were independent of CysLTR1.


Assuntos
Reabsorção Óssea , Osteoclastos , Feminino , Camundongos , Animais , Leucotrieno D4/farmacologia , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Leucotrienos , Glutationa/farmacologia
3.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120952

RESUMO

Bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2) have been regarded as the major cytokines promoting bone formation, however, several studies have reported unexpected results with failure of bone formation or bone resorption of these growth factors. In this study, BMP-2 and FGF-2 adsorbed into atellocollagen sponges were transplanted into bone defects in the bone marrow-scarce calvaria (extramedullary environment) and bone marrow-abundant femur (medullary environment) for analysis of their in vivo effects not only on osteoblasts, osteoclasts but also on bone marrow cells. The results showed that BMP-2 induced high bone formation in the bone marrow-scarce calvaria, but induced bone resorption in the bone marrow-abundant femurs. On the other hand, FGF-2 showed opposite effects compared to those of BMP-2. Analysis of cellular dynamics revealed numerous osteoblasts and osteoclasts present in the newly-formed bone induced by BMP-2 in calvaria, but none were seen in either control or FGF-2-transplanted groups. On the other hand, in the femur, numerous osteoclasts were observed in the vicinity of the BMP-2 pellet, while a great number of osteoblasts were seen near the FGF-2 pellets or in the control group. Of note, FCM analysis showed that both BMP-2 and FGF-2 administrated in the femur did not significantly affect the hematopoietic cell population, indicating a relatively safe application of the two growth factors. Together, these results indicate that BMP-2 could be suitable for application in extramedullary bone regeneration, whereas FGF-2 could be suitable for application in medullary bone regeneration.


Assuntos
Medula Óssea/efeitos dos fármacos , Proteína Morfogenética Óssea 2/metabolismo , Colágeno/administração & dosagem , Fêmur/lesões , Fator 2 de Crescimento de Fibroblastos/metabolismo , Crânio/lesões , Animais , Medula Óssea/metabolismo , Proteína Morfogenética Óssea 2/química , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular , Microambiente Celular , Colágeno/química , Implantes de Medicamento , Fêmur/citologia , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/química , Humanos , Camundongos , Osteogênese , Crânio/citologia , Crânio/diagnóstico por imagem , Crânio/efeitos dos fármacos , Microtomografia por Raio-X
4.
Cells Tissues Organs ; 207(3-4): 115-126, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31574516

RESUMO

Stem cells have essential applications in in vitro tissue engineering or regenerative medicine. However, there is still a need to understand more deeply the mechanisms of stem cell differentiation and to optimize the methods to control stem cell function. In this study, we first investigated the activity of DNA methyltransferases (DNMTs) during chondrogenic differentiation of human bone marrow-derived mesenchymal stem/progenitor cells (hBMSCs) and found that DNMT3A and DNMT3B were markedly upregulated during hBMSC chondrogenic differentiation. In an attempt to understand the effect of DNMT3A and DNMT3B on the chondrogenic differentiation of hBMSCs, we transiently transfected the cells with expression vectors for the two enzymes. Interestingly, DNMT3A overexpression strongly enhanced the chondrogenesis of hBMSCs, by increasing the gene expression of the mature chondrocyte marker, collagen type II, more than 200-fold. Analysis of the methylation condition in the cells revealed that DNMT3A and DNMT3B methylated the promoter sequence of early stem cell markers, NANOG and POU5F1(OCT-4). Conversely, the suppression of chondrogenic differentiation and the increase in stem cell markers of hBMSCs were obtained by chemical stimulation with the demethylating agent, 5-azacitidine. Loss-of-function assays with siRNAs targeting DNMT3A also significantly suppressed the chondrogenic differentiation of hBMSCs. Together, these results not only show the critical roles of DNMTs in regulating the chondrogenic differentiation of hBMSCs, but also suggest that manipulation of DNMT activity can be important tools to enhance the differentiation of hBMSCs towards chondrogenesis for potential application in cartilage tissue engineering or cartilage regeneration.


Assuntos
Condrogênese , Metilação de DNA , Células-Tronco Mesenquimais/citologia , Linhagem Celular , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Humanos , Células-Tronco Mesenquimais/metabolismo , Regulação para Cima , DNA Metiltransferase 3B
5.
Int J Mol Sci ; 20(19)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554264

RESUMO

Epithelial keratinization involves complex cellular modifications that provide protection against pathogens and chemical and mechanical injuries. In the oral cavity, keratinized mucosa is also crucial to maintain healthy periodontal or peri-implant tissues. In this study, we investigated the roles of type XVIII collagen, a collagen-glycosaminoglycan featuring an extracellular matrix component present in the basement membrane, in oral mucosal keratinization. Histological analysis of keratinized and non-keratinized oral mucosa showed that type XVIII collagen was highly expressed in keratinized mucosa. Additionally, a 3D culture system using human squamous carcinoma cells (TR146) was used to evaluate and correlate the changes in the expression of type XVIII collagen gene, COL18A1, and epithelial keratinization-related markers, e.g., keratin 1 (KRT1) and 10 (KRT10). The results showed that the increase in COL18A1 expression followed the increase in KRT1 and KRT10 mRNA levels. Additionally, loss-of-function analyses using silencing RNA targeting COL18A1 mRNA and a Col18-knockout (KO) mouse revealed that the absence of type XVIII collagen induces a dramatic decrease in KRT10 expression as well as in the number and size of keratohyalin granules. Together, the results of this study demonstrate the importance of type XVIII collagen in oral mucosal keratinization.


Assuntos
Colágeno Tipo XVIII/metabolismo , Grânulos Citoplasmáticos/metabolismo , Queratinas/metabolismo , Mucosa Bucal/metabolismo , Animais , Biomarcadores , Diferenciação Celular/genética , Colágeno Tipo VIII/genética , Colágeno Tipo VIII/metabolismo , Colágeno Tipo XVIII/genética , Imunofluorescência , Humanos , Camundongos , Camundongos Knockout
6.
Exp Cell Res ; 383(2): 111556, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31415758

RESUMO

The synovial fluids of patients with osteoarthritis (OA) contain elevated levels of inflammatory cytokines, which induce the expression of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) and of the matrix metalloproteinase (MMP) in chondrocytes. Mechanical strain has varying effects on organisms depending on the strength, cycle, and duration of the stressor; however, it is unclear under inflammatory stimulation how mechanical strain act on. Here, we show that mechanical strain attenuates inflammatory cytokine-induced expression of matrix-degrading enzymes. Cyclic tensile strain (CTS), as a mechanical stressor, attenuated interleukin (IL)-1ß and tumor necrosis factor (TNF)-α-induced mRNA expression of ADAMTS4, ADAMTS9, and MMP-13 in normal chondrocytes (NHAC-kn) and in a chondrocytic cell line (OUMS-27). This effect was abolished by treating cells with mechano-gated channel inhibitors, such as gadolinium, transient receptor potential (TRP) family inhibitor, ruthenium red, and with pharmacological and small interfering RNA-mediated TRPV1 inhibition. Furthermore, nuclear factor κB (NF-κB) translocation from the cytoplasm to the nucleus resulting from cytokine stimulation was also abolished by CTS. These findings suggest that mechanosensors such as the TRPV protein are potential therapeutic targets in treating OA.


Assuntos
Proteína ADAMTS9/genética , Citocinas/farmacologia , Mediadores da Inflamação/farmacologia , Estresse Mecânico , Canais de Cátion TRPV/fisiologia , Proteína ADAMTS4/genética , Proteína ADAMTS4/metabolismo , Proteína ADAMTS9/metabolismo , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1beta/farmacologia , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , NF-kappa B/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Líquido Sinovial/metabolismo , Resistência à Tração/fisiologia , Fator de Necrose Tumoral alfa/farmacologia
7.
Biochem Biophys Res Commun ; 516(4): 1229-1233, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31300199

RESUMO

Global gene deletion studies have established that Runt-related transcription factor-2 (Runx2) is essential during skeletogenesis for osteoblastic differentiation in both intramembranous and endochondral ossification processes. However, the postnatal significance of Runx2 in vivo is poorly understood because a global Runx2 deletion causes perinatal lethality. In this study, we generated tamoxifen-induced Runx2 global deficient mice by crossing Runx2flox mice with ROSA26-CreERT2 mice (Rosa26-CreERT2; Runx2flox/flox). Four-week-old mice were intraperitoneally treated with tamoxifen for five consecutive days, sacrificed, and analyzed six weeks after tamoxifen administration. Deletion of Runx2 led to low bone mass, which is associated with decreased bone formation and bone resorption as well as excessive bone marrow adiposity. Collectively, postnatal Runx2 absolutely plays an important role in maintaining the homeostasis of bone tissues not only in bone mass, but also in the bone marrow environment.


Assuntos
Adipócitos/citologia , Densidade Óssea , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/fisiologia , Deleção de Genes , Adiposidade , Envelhecimento , Animais , Células da Medula Óssea/citologia , Cruzamentos Genéticos , Modelos Animais de Doenças , Feminino , Genótipo , Masculino , Camundongos , Camundongos Transgênicos , Osteoporose , Fenótipo , Tamoxifeno/farmacologia , Tíbia , Microtomografia por Raio-X
8.
Int J Mol Sci ; 20(5)2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836626

RESUMO

A deeper understanding of the detailed mechanism of in vivo tissue healing is necessary for the development of novel regenerative therapies. Among several external factors, environmental pH is one of the crucial parameters that greatly affects enzyme activity and cellular biochemical reactions involving tissue repair and homeostasis. In this study, in order to analyze the microenvironmental conditions during bone healing, we first measured the pH in vivo at the bone healing site using a high-resolution fiber optic pH microsensor directly in femur defects and tooth extraction sockets. The pH was shown to decrease from physiological 7.4 to 6.8 during the initial two days of healing (inflammatory phase). In the same initial stages of the inflammatory phase of the bone healing process, mesenchymal stem cells (MSCs) are known to migrate to the healing site to contribute to tissue repair. Therefore, we investigated the effect of a short-term acidic (pH 6.8) pre-treatment on the stemness of bone marrow-derived MSCs (BMSCs). Interestingly, the results showed that pre-treatment of BMSCs with acidic pH enhances the expression of stem cell markers (OCT-4, NANOG, SSEA-4), as well as cell viability and proliferation. On the other hand, acidic pH decreased BMSC migration ability. These results indicate that acidic pH during the initial stages of bone healing is important to enhance the stem cell properties of BMSCs. These findings may enable the development of novel methods for optimization of stem cell function towards tissue engineering or regenerative medicine.


Assuntos
Ácidos/farmacologia , Regeneração Óssea/genética , Osteogênese/efeitos dos fármacos , Engenharia Tecidual/métodos , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Proteína Homeobox Nanog/genética , Fator 3 de Transcrição de Octâmero/genética , Medicina Regenerativa , Antígenos Embrionários Estágio-Específicos/genética , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Cicatrização/genética
9.
J Bone Miner Res ; 34(2): 327-332, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30352125

RESUMO

Bone morphogenetic protein 2 (BMP-2) is widely known as a potent growth factor that promotes bone formation. However, an increasing number of studies have demonstrated side effects of BMP-2 therapy. A deeper understanding of the effect of BMP-2 on cells other than those involved directly in bone remodeling is of fundamental importance to promote a more effective delivery of BMP-2 to patients. In this study, we aimed to investigate the effect of BMP-2 in the marrow environment. First, BMP-2 adsorbed onto titanium implants was delivered at the tooth extraction socket (marrow-absent site) or in the mandible marrow of beagle dogs. BMP-2 could induce marked bone formation around the implant at the tooth extraction socket. Surprisingly, however, no bone formation was observed in the BMP-2-coated titanium implants inserted in the mandible marrow. In C57BL/6 mice, BMP-2 adsorbed in freeze-dried collagen pellets could induce bone formation in marrow-absent calvarial bone. However, similar to the canine model, BMP-2 could not induce bone formation in the femur marrow. Analysis of osteoblast differentiation using Col1a1(2.3)-GFP transgenic mice revealed a scarce number of osteoblasts in BMP-2-treated femurs, whereas in the control group, osteoblasts were abundant. Ablation of femur marrow recovered the BMP-2 ability to induce bone formation. In vitro experiments analyzing luciferase activity of C2C12 cells with the BMP-responsive element and alkaline phosphatase activity of MC3T3-E1 osteoblasts further revealed that bone marrow cells inhibit the BMP-2 effect on osteoblasts by direct cell-cell contact. Collectively, these results showed that the effect of BMP-2 in inducing bone formation is remarkably repressed by marrow cells via direct cell-cell contact with osteoblasts; this opens new perspectives on the clarification of the side-effects associated with BMP-2 application. © 2018 American Society for Bone and Mineral Research.


Assuntos
Células da Medula Óssea/metabolismo , Proteína Morfogenética Óssea 2 , Microambiente Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Titânio , Animais , Células da Medula Óssea/patologia , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacologia , Microambiente Celular/genética , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Cães , Feminino , Fêmur/metabolismo , Fêmur/patologia , Humanos , Camundongos , Camundongos Transgênicos , Osteoblastos/patologia , Osteogênese/genética , Titânio/química , Titânio/farmacologia
10.
J Orthop Res ; 36(12): 3247-3255, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30117186

RESUMO

Hyaluronan (HA) is an extracellular matrix (ECM) component of articular cartilage and has been used to treat patients with osteoarthritis (OA). A disintegrin and metalloproteinases with thrombospondin motifs (ADAMTSs) play an important role in cartilage degradation in OA. We have previously reported that ADAMTS4 and ADAMTS9 were induced by cytokine stimulation. However, the effect of HA on the cytokine-inducible ADAMTS9 has never been investigated. Moreover, it is unclear whether HA protects cartilage by suppressing aggrecan degradation. Here, we examined the effects of HA on ADAMTS expression in vitro and on cartilage degradation in vivo. ADAMTS9 expression was higher than that of the other aggrecanases (ADAMTS4 and 5) in human chondrocytes, chondrocytic cells, and rat cartilage. ADAMTS4 and 9 mRNA levels were upregulated in cytokine-stimulated chondrocytes and chondrocytic cells. Pre-incubation with HA significantly inhibited ADAMTS9 mRNA expression in cytokine-stimulated cells. In a rat OA model, Adamts5 and 9 mRNA levels were transiently increased after surgery; intra-articular HA injections attenuated the induction of Adamts5 and 9 mRNA. HA also blocked aggrecan cleavage by aggrecanase in OA rats in a molecular size-dependent manner. These results demonstrate that HA attenuates induced aggrecanases expression in OA and thereby protects articular cartilage degradation by this enzyme. Our findings provide insight into the molecular basis for the beneficial effects of HA in OA. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 36:3247-3255, 2018.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Endopeptidases/genética , Ácido Hialurônico/farmacologia , Proteína ADAMTS5/genética , Proteína ADAMTS9/genética , Agrecanas/metabolismo , Animais , Cartilagem Articular/metabolismo , Células Cultivadas , Humanos , Receptores de Hialuronatos/fisiologia , Masculino , Peso Molecular , Osteoartrite/metabolismo , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley
11.
Acta Med Okayama ; 72(3): 257-266, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29926003

RESUMO

Several research groups demonstrated that 'a disintegrin-like and metalloproteinase with thrombospondin type 1 motifs (ADAMTS)'-family proteases play roles in cancer progression. However, the origins and contributions of these proteases are not known. Here, we demonstrate an association between host-produced ADAMTS4 and early-stage tumor growth. Murine Lewis lung carcinoma (LLC) tumors showed marked expressions of Adamts4 and Adamts5. We examined the contributions and distributions of host-derived Adamts4 and Adamts5 on tumor growth, using Adamts4LacZ/LacZ and Adamts5LacZ/LacZ knockout mice. Interestingly, the Adamts4LacZ/LacZ mice showed enhanced tumor growth compared to wild-type mice at 5-, 10- and 12-days post-inoculation, whereas the Adamts5LacZ/LacZ mice did not show significant differences in tumor growth. We next examined LacZ distribution in LLC tumor-bearing Adamts4LacZ/LacZ mice by ß-galactosidase (ß-gal) staining. We found that the ß-gal-positive signals were strictly localized at the interior areas of the tumor at 10 days post-inoculation. Multiple staining demonstrated that most of the ß-gal-positive cells were localized at the tumor vasculature in Adamts4LacZ/LacZ mice. Interestingly, ß-gal-positive signals were not co-localized with biglycan after 10 days post-inoculation, excluding the biglycan cleavage by host-derived ADAMTS4. Taken together, these findings illustrate that host-derived ADAMTS4 was expressed at the tumor vessels and was associated with early-stage tumor growth.


Assuntos
Proteína ADAMTS4/fisiologia , Neoplasias Experimentais/patologia , Proteína ADAMTS4/análise , Proteína ADAMTS5/análise , Proteína ADAMTS5/fisiologia , Animais , Proliferação de Células , Células Endoteliais/química , Camundongos , Camundongos Endogâmicos C57BL , Estadiamento de Neoplasias , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/prevenção & controle , Molécula-1 de Adesão Celular Endotelial a Plaquetas/análise
12.
J Cell Physiol ; 233(6): 4825-4840, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29150954

RESUMO

A vast number of long-noncoding RNAs (lncRNA) are found expressed in human cells, which RNAs have been developed along with human evolution. However, the physiological functions of these lncRNAs remain mostly unknown. In the present study, we for the first time uncovered the fact that one of such lncRNAs plays a significant role in the differentiation of chondrocytes and, possibly, of osteoblasts differentiated from mesenchymal stem cells, which cells eventually construct the human skeleton. The urothelial cancer-associated 1 (UCA1) lncRNA is known to be associated with several human malignancies. Firstly, we confirmed that UCA1 was expressed in normal human chondrocytes, as well as in a human chondrocytic cell line; whereas it was not detected in human bone marrow mesenchymal stem cells (hBMSCs). Of note, although UCA1 expression was undetectable in hBMSCs, it was markedly induced along with the differentiation toward chondrocytes, suggesting its critical role in chondrogenesis. Consistent with this finding, silencing of the UCA1 gene significantly repressed the expression of chondrogenic genes in human chondrocytic cells. UCA1 gene silencing and hyper-expression also had a significant impact on the osteoblastic phenotype in a human cell line. Finally, forced expression of UCA1 in a murine chondrocyte precursor, which did not possess a UCA1 gene, overdrove its differentiation into chondrocytes. These results indicate a physiological and important role of this lncRNA in the skeletal development of humans, who require more sustained endochondral ossification and osteogenesis than do smaller vertebrates.


Assuntos
Condrócitos/metabolismo , Condrogênese , Osteoblastos/metabolismo , Osteogênese , RNA Longo não Codificante/metabolismo , Células-Tronco/metabolismo , Animais , Desdiferenciação Celular , Linhagem Celular Tumoral , Senescência Celular , Condrogênese/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Osteogênese/genética , Fenótipo , Primatas , RNA Longo não Codificante/genética , Transdução de Sinais
13.
Sci Rep ; 7(1): 17225, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222454

RESUMO

The proteoglycan versican is implicated in growth and metastases of several cancers. Here we investigated a potential contribution of stromal versican to tumor growth and angiogenesis. We initially determined versican expression by several cancer cell lines. Among these, MDA-MB231 and B16F10 had none to minimal expression in contrast to Lewis lung carcinoma (LLC). Notably, tumors arising from these cell lines had higher versican levels than the cell lines themselves suggesting a contribution from the host-derived tumor stroma. In LLC-derived tumors, both the tumor and stroma expressed versican at high levels. Thus, tumor stroma can make a significant contribution to tumor versican content. Versican localized preferentially to the vicinity of tumor vasculature and macrophages in the tumor. However, an ADAMTS protease-generated versican fragment uniquely localized to vascular endothelium. To specifically determine the impact of host/stroma-derived versican we therefore compared growth of tumors from B16F10 cells, which produced littleversican, in Vcan hdf/+ mice and wild-type littermates. Tumors in Vcan hdf/+ mice had reduced growth with a lower capillary density and accumulation of capillaries at the tumor periphery. These findings illustrate the variability of tumor cell line expression of versican, and demonstrate that versican is consistently contributed by the stromal tissue, where it contributes to tumor angiogenesis.


Assuntos
Neovascularização Patológica/metabolismo , Células Estromais/metabolismo , Versicanas/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Macrófagos/metabolismo , Camundongos , Metástase Neoplásica , Proteólise , Microambiente Tumoral , Versicanas/biossíntese , Versicanas/genética
14.
Acta Histochem Cytochem ; 50(2): 71-84, 2017 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-28522882

RESUMO

We used suncus (Suncus murinus; house musk shrew) to generate partner cells for cell fusion to produce suncus monoclonal antibodies. Suncus are insectivores that are genetically distant to rodents, and recognize antigens and epitopes that are not immunogenic in mice and rats, which are the animals most commonly used in basic life science research and from which monoclonal antibodies are usually produced. To date, monoclonal antibodies from suncus have not been generated due to the lack of a plasmacytoma fusion partner. To obtain suncus plasmacytoma cell lines suitable as a cell fusion partner, we injected suncus at both sides of the tail base with antigen emulsion, collected the lymph nodes and spleens, and cultured the cells to obtain immortalized lymphoid cell lines visually resembling mouse SP2/0-Ag14 myeloma cells. Three suncus immunized with the antigen provided 4 cell lines of suncus plasmacytoma, but they did not secrete immunoglobulins. Antibody-producing hybrid cells were generated from these cell lines using a cell fusion technique. Using one of the cell lines as a fusion partner, we obtained six lines of immunoglobulin-producing hybrid cells which secreted an unidentified monoclonal IgG. When these 6 lines were used as new fusion partners, we obtained several hybrid cell lines which secreted immunogen-specific monoclonal antibodies. These hybrid cells can be cloned and cryopreserved. We also obtained another good fusion partner which initially secreted antibody but later stopped doing so. These suncus-suncus hybrid cell lines will be useful for the production of suncus monoclonal antibodies.

15.
Bone ; 83: 162-170, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26555637

RESUMO

The CCN family of proteins plays important roles in development and homeostasis of bone and cartilage. To understand the role of CCN4 in chondrogenesis, human bone marrow stromal cells (hBMSCs) were transduced with CCN4 adenovirus (adCCN4) or siRNA to CCN4 (siCCN4) in the presence or absence of transforming growth factor-ß3 (TGF-ß3). Overexpression of CCN4 enhanced TGF-ß3-induced SMAD2/3 phosphorylation and chondrogenesis of hBMSCs in an in vitro assay using a micromass culture model. On the other hand, knockdown of CCN4 inhibited the TGF-ß3-induced SMAD2/3 phosphorylation and synthesis of cartilage matrix in micromass cultures of hBMSCs. Immunoprecipitation-western blot analysis revealed that CCN4 bound to TGF-ß3 and regulated the ability of TGF-ß3 to bind to hBMSCs. In vivo analysis confirmed there was a significant decrease in the gene expression levels of chondrocyte markers in cartilage samples from Ccn4-knock out (KO) mice, compared to those from wild type (WT) control. In order to investigate the regenerative properties of the articular cartilage in Ccn4-KO mice, articular cartilage defects were surgically performed in the knee joints of young mice, and the results showed that the cartilage was partially repaired in WT mice, but not in Ccn4-KO mice. In conclusion, these results show, for the first time, that CCN4 has a positive influence on chondrogenic differentiation by modulating the effects of TGF-ß3.


Assuntos
Proteínas de Sinalização Intercelular CCN/metabolismo , Condrogênese , Proteínas Proto-Oncogênicas/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Animais , Biomarcadores/metabolismo , Proteínas de Sinalização Intercelular CCN/genética , Cartilagem Articular/patologia , Diferenciação Celular , Células Cultivadas , Condrogênese/genética , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos Knockout , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Reação em Cadeia da Polimerase em Tempo Real , Regeneração , Transdução de Sinais/genética , Proteínas Smad/metabolismo , Cicatrização
16.
Int J Clin Oncol ; 21(2): 302-309, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26293333

RESUMO

BACKGROUND: Increased expression of collagen XV has been reported in hepatocellular carcinogenesis in mice. The aim of this study was to confirm the previous murine findings in human hepatocellular carcinoma (HCC) specimens, along with the histopathological distribution of collagen XV in tumoral tissues. METHODS: Sixty-three primary HCC specimens were examined. Immunostaining of collagen XV and quantitative reverse transcriptional PCR of COL15A1, which encodes collagen XV, were performed. RESULTS: Positive staining of collagen XV was observed in all tumoral regions, regardless of differentiation level or pathological type of HCC, along the sinusoid-like endothelium, whereas collagen XV was not expressed in any non-tumoral region. The intensity score of collagen XV immunostaining and the mRNA value of COL15A1 were significantly correlated. COL15A1 expression in tumors was 3.24-fold higher than in non-tumoral regions. Multivariate analysis showed that COL15A1 expression was significantly higher in the absence of hepatitis virus and moderately differentiated HCC. CONCLUSIONS: COL15A1 mRNA was up-regulated in HCC and collagen XV was expressed along the sinusoid-like endothelium of HCC but not in non-tumoral regions, which implies that collagen XV contributes to the capillarization of HCC.


Assuntos
Carcinoma Hepatocelular/química , Carcinoma Hepatocelular/patologia , Colágeno/genética , Neoplasias Hepáticas/química , Neoplasias Hepáticas/patologia , Idoso , Idoso de 80 Anos ou mais , Carcinogênese , Carcinoma Hepatocelular/irrigação sanguínea , Diferenciação Celular , Endotélio/química , Feminino , Humanos , Fígado/química , Neoplasias Hepáticas/irrigação sanguínea , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica , RNA Mensageiro/análise
17.
Acta Med Okayama ; 69(3): 145-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26101190

RESUMO

Eosinophil cationic protein (ECP) is well known as a cationic protein contained in the basic granules of activated eosinophils. Recent studies have reported that ECP exhibits novel activities on various types of cells, including rat neonatal cardiomyocytes. Here we evaluated the effects of ECP on rat cardiac myoblast H9c2 cells. Our results showed that ECP enhanced the survival of the cells, in part by promoting the ERK and Akt/GSK-3ß signaling pathways. ECP attenuated the cytotoxic effects of H2O2 on H9c2 cells as well as the production of reactive oxygen species, the number of apoptotic cells and caspase 3/7 activity in the cells. In conclusion, ECP activated the ERK and Akt/GSK-3ß pathways, resulting in anti-oxidative effects on H9c2 cells that attenuated apoptosis.


Assuntos
Proteína Catiônica de Eosinófilo/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Mioblastos Cardíacos/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Glicogênio Sintase Quinase 3 beta , Fosforilação , Ratos , Transdução de Sinais
18.
Inflamm Res ; 63(2): 139-47, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24189711

RESUMO

OBJECTIVE: We have previously demonstrated the efficient and time-dependent transvascular localization of Sialyl Lewis X (SLX)-liposomes to inflammatory sites, but the final target of the SLX-liposomes remained uncertain. The aim of this study was to identify the target cells of the liposomes within the inflamed joints of collagen antibody-induced arthritis (CAIA) model mice. METHODS: SLX-liposomes and unlabeled liposomes encapsulating high-density colloidal gold were administered intravenously into the caudal vein of CAIA mice on day 5 after induction of arthritis when the inflammatory score was maximal (n = 6 per group). Six hours or 24 h after liposome administration, animals were euthanized and hind limbs and ankles were excised without perfusion. After fixation, synovial tissues were examined by light microscopy after silver enhancement of colloidal gold or by transmission electron microscopy. RESULTS: Silver-enhanced signals were detected within the cells around E-selectin-positive blood vessels in the synovium of the SLX-liposome group. These cells were positive for the macrophage/monocyte marker F4/80 or neutrophil marker Ly-6G. Transmission electron microscopy detected the colloidal gold signals together with liposome-like structures within the phagosomes of synovial macrophages. Transmission electron microscopy and energy dispersive X-ray spectrometry could determine gold elements in the lysosomes of synovial macrophages. CONCLUSIONS: The results of the current study demonstrate that SLX-liposomes primarily targeting E-selectin in activated endothelial cells could potentially deliver their contents into inflammatory cells around synovial blood vessels in arthritic joints.


Assuntos
Artrite Experimental/metabolismo , Selectina E/metabolismo , Articulações do Pé/metabolismo , Coloide de Ouro/administração & dosagem , Macrófagos/metabolismo , Animais , Artrite Experimental/patologia , Articulações do Pé/patologia , Articulações do Pé/ultraestrutura , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Articulação do Joelho/ultraestrutura , Lipossomos , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Macrófagos/ultraestrutura , Camundongos , Camundongos Endogâmicos DBA , Microscopia/métodos , Microscopia Eletrônica de Transmissão , Oligossacarídeos/metabolismo , Antígeno Sialil Lewis X
19.
J Electron Microsc (Tokyo) ; 60(1): 95-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20923872

RESUMO

Active targeting of the liposome is an attractive strategy for drug delivery and in vivo bio-imaging. We previously reported the specific accumulation of Sialyl Lewis X (SLX) liposome to inflamed tissue in arthritic model mice or tumor-bearing mice. SLX-liposome encapsulation with fluorescent substances allows for the visualization of these liposomes by the time-dependent transvascular accumulation of fluorescent signals in the histological sections. In the present study, we developed a new SLX-liposome encapsulated with colloidal gold for transmission electron microscopic observation. We herein describe the characterization of the colloidal gold-loaded SLX-liposomes and demonstrate its specific targeting to the endothelial cells of tumor blood vessels in tumor-bearing mice.


Assuntos
Células Endoteliais/ultraestrutura , Coloide de Ouro/metabolismo , Lipossomos/farmacocinética , Microscopia Eletrônica de Transmissão/métodos , Neoplasias/irrigação sanguínea , Animais , Artrite/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Feminino , Inflamação/metabolismo , Lipossomos/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Neoplasias/ultraestrutura , Oligossacarídeos/metabolismo , Antígeno Sialil Lewis X
20.
Matrix Biol ; 30(1): 3-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20951201

RESUMO

This is a study of a patient who manifests all of the features of a diffuse leiomyomatosis-Alport syndrome (DL-ATS), and her two-year-old son who has already been diagnosed with Alport syndrome. Fourteen years ago, the patient underwent a partial esophageal resection followed by a replacement with jejunum. Recently, she underwent a surgical resection of the esophagus due to esophageal dysfunction. Genetic analyses of COL4A5 and COL4A6 on the X-chromosome were efficiently performed using the genomic DNA of her son. We have identified a novel deletion of 194-kb in length, encompassing COL4A5-COL4A6 promoters as well as nearly the entire large intron 1 of COL4A5 and intron 2 of COL4A6. To uncover the relationship of the esophagus-specific occurrence of the tumor and the expression of those genes, immunohistochemical analyses of type IV collagen α chains were conducted in the non-affected individuals. The esophageal smooth muscle-specific expression of α5(IV) and α6(IV) chains in the gastrointestinal tract was observed. Moreover, CAG repeat analysis of the androgen receptor gene and an immunohistochemical analysis in the leiomyoma revealed clonal overgrowth of the cells which received X-inactivation on the non-affected allele. These results may suggest that the dominant effect was caused by the partial deletion of the esophageal smooth muscle-specific genes, COL4A5 and COL4A6.


Assuntos
Colágeno Tipo IV/genética , Neoplasias Esofágicas/patologia , Leiomioma/patologia , Miócitos de Músculo Liso/patologia , Sequência de Bases , Colágeno Tipo IV/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Esôfago/metabolismo , Esôfago/patologia , Feminino , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Deleção de Genes , Humanos , Leiomioma/genética , Leiomioma/metabolismo , Leiomiomatose , Dados de Sequência Molecular , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA