Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2386: 171-188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34766272

RESUMO

An important aspect of understanding cancer biology is to connect the diverse repertoire of genotype-to-phenotype displays in individual specimens and ultimately resolve disease course outcome through informative datasets. A focus of cancer genomics has strived to provide predictive capabilities using genomic information to further inform therapeutic strategies. The advent of single-cell sequencing and analysis now provides a route to decipher high-resolution genomic diversity in individual samples and facilitate detailed understanding of clonal evolution in clinical research settings. In addition to generating high-throughput single-cell genomic SNV and CNV data, this protocol describes a new analytical ability that adds a second dimension which provides for interrogation of surface protein marker expression. The first immediate application of this technology is quite suitable to heme cancer cell studies. This multimodal approach allows for correlation of diverse genomic signatures to key phenotypic biomarkers such as immunophenotypes in leukemic diseases.


Assuntos
Proteínas de Membrana/análise , Evolução Clonal , DNA , Genoma , Genômica
2.
Methods Mol Biol ; 2386: 289-307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34766277

RESUMO

Understanding the genomic landscape of cancer in single cells can be valuable for the characterization of molecular events that drive evolution of tumorigenesis and fostering progress in identifying druggable regimens for patient treatment scenarios. We report a new approach to measure multiple modalities simultaneously from up to 10,000 individual cells using microfluidics paired with next-generation sequencing. Our procedure determines targeted protein levels, mRNA transcript levels, and somatic gDNA sequence variations including copy number variants. This approach can resolve over 20 proteins, 100s of targeted transcripts, and DNA amplicons.


Assuntos
Microfluídica , DNA/genética , Variações do Número de Cópias de DNA , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fenótipo , RNA , Análise de Sequência de DNA , Fluxo de Trabalho
3.
Nature ; 587(7834): 477-482, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33116311

RESUMO

Myeloid malignancies, including acute myeloid leukaemia (AML), arise from the expansion of haematopoietic stem and progenitor cells that acquire somatic mutations. Bulk molecular profiling has suggested that mutations are acquired in a stepwise fashion: mutant genes with high variant allele frequencies appear early in leukaemogenesis, and mutations with lower variant allele frequencies are thought to be acquired later1-3. Although bulk sequencing can provide information about leukaemia biology and prognosis, it cannot distinguish which mutations occur in the same clone(s), accurately measure clonal complexity, or definitively elucidate the order of mutations. To delineate the clonal framework of myeloid malignancies, we performed single-cell mutational profiling on 146 samples from 123 patients. Here we show that AML is dominated by a small number of clones, which frequently harbour co-occurring mutations in epigenetic regulators. Conversely, mutations in signalling genes often occur more than once in distinct subclones, consistent with increasing clonal diversity. We mapped clonal trajectories for each sample and uncovered combinations of mutations that synergized to promote clonal expansion and dominance. Finally, we combined protein expression with mutational analysis to map somatic genotype and clonal architecture with immunophenotype. Our findings provide insights into the pathogenesis of myeloid transformation and how clonal complexity evolves with disease progression.


Assuntos
Células Clonais/patologia , Análise Mutacional de DNA , Mutação , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Análise de Célula Única , Separação Celular , Células Clonais/metabolismo , Humanos , Imunofenotipagem
4.
Cancer Res ; 78(8): 1986-1999, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29431637

RESUMO

Epithelial-to-mesenchymal transition (EMT) is organized in cancer cells by a set of key transcription factors, but the significance of this process is still debated, including in non-small cell lung cancer (NSCLC). Here, we report increased expression of the EMT-inducing transcription factor Snail in premalignant pulmonary lesions, relative to histologically normal pulmonary epithelium. In immortalized human pulmonary epithelial cells and isogenic derivatives, we documented Snail-dependent anchorage-independent growth in vitro and primary tumor growth and metastatic behavior in vivo Snail-mediated transformation relied upon silencing of the tumor-suppressive RNA splicing regulatory protein ESRP1. In clinical specimens of NSCLC, ESRP1 loss was documented in Snail-expressing premalignant pulmonary lesions. Mechanistic investigations showed that Snail drives malignant progression in an ALDH+CD44+CD24- pulmonary stem cell subset in which ESRP1 and stemness-repressing microRNAs are inhibited. Collectively, our results show how ESRP1 loss is a critical event in lung carcinogenesis, and they identify new candidate directions for targeted therapy of NSCLC.Significance: This study defines a Snail-ESRP1 cancer axis that is crucial for human lung carcinogenesis, with implications for new intervention strategies and translational opportunities. Cancer Res; 78(8); 1986-99. ©2018 AACR.


Assuntos
Transformação Celular Neoplásica/genética , Inativação Gênica , Pulmão/patologia , Proteínas de Ligação a RNA/genética , Fatores de Transcrição da Família Snail/fisiologia , Animais , Linhagem Celular Transformada , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Modelos Animais
5.
Clin Cancer Res ; 21(11): 2440-4, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25838393

RESUMO

Reprogramming of cellular energy metabolism is widely accepted to be one of the main hallmarks of cancer. The aberrant expression pattern of key regulators in the glycolysis pathway in cancer cells corroborates with the hypothesis that most cancer cells utilize aerobic glycolysis as their main ATP production method instead of mitochondrial oxidative phosphorylation. Overexpression of SLC2A1 and LDHA, both important regulators of the glycolysis pathway, was detected in the premalignant lesions and tumors of lung cancer patients, suggesting the involvement of these proteins in early carcinogenesis and tumor progression in cancer. Preclinical studies demonstrated that inhibiting SLC2A1 or LDHA led to diminished tumor growth in vitro and in vivo. SLC2A1 and LDHA inhibitors, when administered in combination with other chemotherapeutic agents, showed synergistic antitumor effects by resensitizing chemoresistant cancer cells to the chemotherapies. These results indicate that disrupting SLC2A1, LDHA, or other regulators in cancer cell energetics is a very promising approach for new targeted therapies.


Assuntos
Transportador de Glucose Tipo 1/biossíntese , L-Lactato Desidrogenase/biossíntese , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1/antagonistas & inibidores , Glicólise/efeitos dos fármacos , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/biossíntese , L-Lactato Desidrogenase/antagonistas & inibidores , Redes e Vias Metabólicas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação Oxidativa/efeitos dos fármacos
6.
Cancer Prev Res (Phila) ; 7(5): 487-95, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24618292

RESUMO

Lung squamous cell carcinoma (SCC) is thought to arise from premalignant lesions in the airway epithelium; therefore, studying these lesions is critical for understanding lung carcinogenesis. Previous microarray and sequencing studies designed to discover early biomarkers and therapeutic targets for lung SCC had limited success identifying key driver events in lung carcinogenesis, mostly due to the cellular heterogeneity of patient samples examined and the interindividual variability associated with difficult to obtain airway premalignant lesions and appropriate normal control samples within the same patient. We performed RNA sequencing on laser-microdissected representative cell populations along the SCC pathologic continuum of patient-matched normal basal cells, premalignant lesions, and tumor cells. We discovered transcriptomic changes and identified genomic pathways altered with initiation and progression of SCC within individual patients. We used immunofluorescent staining to confirm gene expression changes in premalignant lesions and tumor cells, including increased expression of SLC2A1, CEACAM5, and PTBP3 at the protein level and increased activation of MYC via nuclear translocation. Cytoband enrichment analysis revealed coordinated loss and gain of expression in chromosome 3p and 3q regions, respectively, during carcinogenesis. This is the first gene expression profiling study of airway premalignant lesions with patient-matched SCC tumor samples. Our results provide much needed information about the biology of premalignant lesions and the molecular changes that occur during stepwise carcinogenesis of SCC, and it highlights a novel approach for identifying some of the earliest molecular changes associated with initiation and progression of lung carcinogenesis within individual patients.


Assuntos
Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Lesões Pré-Cancerosas/genética , Carcinoma de Células Escamosas/patologia , Aberrações Cromossômicas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Neoplásicos , Estudos de Associação Genética , Humanos , Neoplasias Pulmonares/patologia , Análise em Microsséries , Estadiamento de Neoplasias , Lesões Pré-Cancerosas/patologia , Alinhamento de Sequência
7.
Cancer Res ; 70(16): 6639-48, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20710044

RESUMO

Smoking is the most important known risk factor for the development of lung cancer. Tobacco exposure results in chronic inflammation, tissue injury, and repair. A recent hypothesis argues for a stem/progenitor cell involved in airway epithelial repair that may be a tumor-initiating cell in lung cancer and which may be associated with recurrence and metastasis. We used immunostaining, quantitative real-time PCR, Western blots, and lung cancer tissue microarrays to identify subpopulations of airway epithelial stem/progenitor cells under steady-state conditions, normal repair, aberrant repair with premalignant lesions and lung cancer, and their correlation with injury and prognosis. We identified a population of keratin 14 (K14)-expressing progenitor epithelial cells that was involved in repair after injury. Dysregulated repair resulted in the persistence of K14+ cells in the airway epithelium in potentially premalignant lesions. The presence of K14+ progenitor airway epithelial cells in NSCLC predicted a poor prognosis, and this predictive value was strongest in smokers, in which it also correlated with metastasis. This suggests that reparative K14+ progenitor cells may be tumor-initiating cells in this subgroup of smokers with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/patologia , Fumar/patologia , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Queratina-14/biossíntese , Queratina-15 , Queratina-5/biossíntese , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Células-Tronco Neoplásicas/metabolismo , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Prognóstico , Mucosa Respiratória/patologia , Fumar/metabolismo
8.
Mol Biosyst ; 2(11): 551-60, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17216036

RESUMO

Methodologies to detect DNA sequences with high sensitivity and specificity have tremendous potential as molecular diagnostic agents. Most current methods exploit the ability of single-stranded DNA (ssDNA) to base pair with high specificity to a complementary molecule. However, recent advances in robust techniques for recognition of DNA in the major and minor groove have made possible the direct detection of double-stranded DNA (dsDNA), without the need for denaturation, renaturation, or hybridization. This review will describe the progress in adapting polyamides, triplex DNA, and engineered zinc finger DNA-binding proteins as dsDNA diagnostic systems. In particular, the sequence-enabled reassembly (SEER) method, involving the use of custom zinc finger proteins, offers the potential for direct detection of dsDNA in cells, with implications for cell-based diagnostics and therapeutics.


Assuntos
DNA/química , Nylons/química , Engenharia de Proteínas/métodos , Dedos de Zinco , Sequência de Aminoácidos , Animais , Pareamento de Bases , Reagentes de Ligações Cruzadas , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Fosfatos de Dinucleosídeos , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA