Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Genes Environ ; 46(1): 5, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38326915

RESUMO

The prevalence of cancer is increasing globally, and Malaysia is no exception. The exposome represents a paradigm shift in cancer research, emphasizing the importance of a holistic approach that considers the cumulative effect of diverse exposures encountered throughout life. The exposures include dietary factors, air and water pollutants, occupational hazards, lifestyle choices, infectious agents and social determinants of health. The exposome concept acknowledges that each individual's cancer risk is shaped by not only their genetic makeup but also their unique life experiences and environmental interactions. This comprehensive review was conducted by systematically searching scientific databases such as PubMed, Scopus and Google Scholar, by using the keywords "exposomes (environmental exposures AND/OR physical exposures AND/OR chemical exposures) AND cancer risk AND Malaysia", for relevant articles published between 2010 and 2023. Articles addressing the relationship between exposomes and cancer risk in the Malaysian population were critically evaluated and summarized. This review aims to provide an update on the epidemiological evidence linking exposomes with cancer risk in Malaysia. This review will provide an update for current findings and research in Malaysia related to identified exposomes-omics interaction and gap in research area related to the subject matter. Understanding the interplay between complex exposomes and carcinogenesis holds the potential to unveil novel preventive strategies that may be beneficial for public health.

2.
Genes Environ ; 45(1): 28, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37899475

RESUMO

BACKGROUND: The species of genus Macaranga are widely found in Malaysian secondary forests and has been used as an alternative for treating varieties of illness. Studies have shown that the medicinal properties of this genus contain anti-inflammatory, antioxidant, and anti-cancer effects. This study aimed to determine the cytotoxicity of six isolated phytochemicals from Macaranga heynei (M. heynei), Macaranga lowii and Shorea leprosula on HT-29 human colorectal adenocarcinoma cell lines. RESULTS: One out of six isolated phytochemical compounds, identified as "Laevifolin A", showed a cytotoxicity with an IC50 value of 21.2 µM following 48 h treatment as detected using Sulforhodamine B (SRB) assay. Additionally, no induction of apoptosis and oxidative stress were observed on Laevifolin A treated HT-29 cells as determined using Annexin V-FITC/PI assay and dihydroethidine (HE) staining, respectively. Additionally, no damage to the DNA were observed as measured using the Alkaline Comet assay. Further investigation on menadione-induced oxidative DNA damage showed the genoprotective potential of Laevifolin A on HT-29 cells. CONCLUSIONS: In conclusion, this study indicated that only one compound (Laevifolin A) that extracted from M. heynei has the cytotoxicity potential to be developed as an anticancer agent in human colorectal adenocarcinoma. However, besides exhibiting cytotoxic effect, the compound also exhibits genoprotective capability that warrant further investigation.

3.
Nutrients ; 15(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513601

RESUMO

Senescence is a normal biological process that is accompanied with a series of deteriorations in physiological function. This study aimed to investigate the effects of bovine colostrum milk supplementation on metabolic changes and the expression of various biomarkers on inflammation, antioxidant and oxidative damage, nutrient metabolism, and genomic stability among older adults. Older adults (50-69 years old) who participated in the 12-week randomized, double-blinded, placebo-controlled trial were instructed to consume the IgCo bovine colostrum-enriched skim milk or regular skim milk (placebo) twice daily. Following 12 weeks of intervention, participants in the intervention group had lower expression levels in pro-inflammatory mediators (CRP, IL-6, and TNF-α), with significant (p < 0.05) interaction effects of the group and time observed. However, no significant interaction effect was observed in the vitamin D, telomerase, 8-OHdG, MDA, and SOD activities. UPLC-MS-based untargeted metabolomics analysis revealed that 22 metabolites were upregulated and 11 were downregulated in the intervention group compared to the placebo group. Glycerophospholipid metabolism, along with cysteine and methionine metabolism were identified as the potential metabolic pathways that are associated with bovine colostrum milk consumption. In conclusion, consuming bovine colostrum milk may induce metabolic changes and reduce the expression of various pro-inflammatory mediators, thus improving the immune function in older adults.


Assuntos
Colostro , Leite , Gravidez , Feminino , Animais , Humanos , Bovinos , Idoso , Pessoa de Meia-Idade , Colostro/metabolismo , Mediadores da Inflamação/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Biomarcadores/metabolismo , Suplementos Nutricionais , Metabolômica
4.
Artigo em Inglês | MEDLINE | ID: mdl-36868695

RESUMO

Complexes of coinage metals can potentially be used as alternatives to platinum-based chemotherapeutic drugs. Silver is a coinage metal that can potentially improve the spectrum of efficacy in various cancers treatment, such as malignant melanoma. Melanoma is the most aggressive form of skin cancer that is often diagnosed in young and middle-aged adults. Silver has high reactivity with skin proteins and can be developed as a malignant melanoma treatment modality. Therefore, this study aims to identify the anti-proliferative and genotoxic effects of silver(I) complexes with mixed-ligands of thiosemicarbazones and diphenyl(p-tolyl)phosphine ligands in the human melanoma SK-MEL-28 cell line. The anti-proliferative effects of a series of silver(I) complex compounds labelled as OHBT, DOHBT, BrOHBT, OHMBT, and BrOHMBT were evaluated on SK-MEL-28 cells by using the Sulforhodamine B assay. Then, DNA damage analysis was performed in a time-dependent manner (30 min, 1 h and 4 h) by using alkaline comet assay to investigate the genotoxicity of OHBT and BrOHMBT at their respective IC50 values. The mode of cell death was studied using Annexin V-FITC/PI flow cytometry assay. Our current findings demonstrated that all silver(I) complex compounds showed good anti-proliferative activity. The IC50 values of OHBT, DOHBT, BrOHBT, OHMBT, and BrOHMBT were 2.38 ± 0.3 µM, 2.70 ± 0.17 µM, 1.34 ± 0.22 µM, 2.82 ± 0.45 µM, and 0.64 ± 0.04 µM respectively. Then, DNA damage analysis showed that OHBT and BrOHMBT could induce DNA strand breaks in a time-dependent manner, with OHBT being more prominent than BrOHMBT. This effect was accompanied by apoptosis induction in SK-MEL-28, as evaluated using Annexin V-FITC/PI assay. In conclusion, silver(I) complexes with mixed-ligands of thiosemicarbazones and diphenyl(p-tolyl)phosphine exerted anti-proliferative activities by inhibiting cancer cell growth, inducing significant DNA damage and ultimately resulting in apoptosis.


Assuntos
Melanoma , Tiossemicarbazonas , Adulto , Humanos , Pessoa de Meia-Idade , Prata , Dano ao DNA , Melanoma Maligno Cutâneo
5.
J Oncol ; 2023: 2611105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908705

RESUMO

Background: Approximately 10% of cancer patients worldwide have colorectal cancer (CRC), a prevalent gastrointestinal malignancy with substantial mortality and morbidity. The purpose of this work was to investigate the APOC1 gene's expression patterns in the CRC tumor microenvironment and, using the findings from bioinformatics, to assess the biological function of APOC1 in the development of CRC. Methods: The TCGA portal was employed in this investigation to find APOC1 expression in CRC. Its correlation with other genes and clinicopathological data was examined using the UALCAN database. To validate APOC1's cellular location, the Human Protein was employed. In order to forecast the relationship between APOC1 expression and prognosis in CRC patients, the Kaplan-Meier plotter database was used. TISIDB was also employed to evaluate the connection between immune responses and APOC1 expression in CRC. The interactions of APOC1 with other proteins were predicted using STRING. In order to understand the factors that contribute to liver metastasis from CRC, single-cell RNA sequencing (scRNA-seq) was done on one patient who had the disease. This procedure included sampling preoperative blood and the main colorectal cancer tissues, surrounding colorectal cancer normal tissues, liver metastatic cancer tissues, and normal liver tissues. Finally, an in vitro knockdown method was used to assess how APOC1 expression in tumor-associated macrophages (TAMs) affected CRC cancer cell growth and migration. Results: When compared to paracancerous tissues, APOC1 expression was considerably higher in CRC tissues. The clinicopathological stage and the prognosis of CRC patients had a positive correlation with APOC1 upregulation and a negative correlation, respectively. APOC1 proteins are mostly found in cell cytosols where they may interact with APOE, RAB42, and TREM2. APOC1 was also discovered to have a substantial relationship with immunoinhibitors (CD274, IDO1, and IL10) and immunostimulators (PVR, CD86, and ICOS). According to the results of scRNA-seq, we found that TAMs of CRC tissues had considerably more APOC1 than other cell groups. The proliferation and migration of CRC cells were impeded in vitro by APOC1 knockdown in TAMs. Conclusion: Based on scRNA-seq research, the current study shows that APOC1 was overexpressed in TAMs from CRC tissues. By inhibiting APOC1 in TAMs, CRC progression was reduced in vitro, offering a new tactic and giving CRC patients fresh hope.

6.
Aging (Albany NY) ; 14(21): 8688-8699, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36375474

RESUMO

BACKGROUND: A complex of Zn and carnosine, called Zinc-L-carnosine (ZnC), enjoys a wide application as part of a Zn supplement therapeutic method as well as in treating peptic ulcers. However, researches fail to confirm the biological functions possessed by ZnC as well as tumor immune microenvironment in colorectal cancer (CRC). METHODS: Cell counting kit 8(CCK8), 5-ethynyl-2'-deoxyuridine (EdU), transwell and wound healing assays were conducted to study the influence of ZnC in the proliferating, invading and migrating processes of CRC cell lines (HCT116, LOVO) in vitro. The antitumor activity ZnC as well as its effects on tumor immune microenvironment were then assessed using CRC subcutaneous tumors in the C57BL/6 mouse model. RESULTS: According to CCK8, EdU, transwell and wound healing assays, ZnC inhibited CRC cell lines in terms of proliferation, invasion and migration. ZnC could inhibit miR-570 for up-regulating PD-L1 expression. In vivo experiments showed that gavage (100 mg/kg, once every day) of ZnC inhibited the tumor growth of CRC, and the combination of ZnC and anti-PD1 therapy significantly improved the efficacy exhibited by anti-PD1 in treating CRC. In addition, mass cytometry results showed that immunosuppressive cells including regulatory T cells (tregs), bone marrow-derived suppressor cells (MDSC), and M2 macrophages decreased whereas CD8+ T cells elevated after adding ZnC. CONCLUSIONS: The present study reveals that ZnC slows the progression of CRC by inhibiting CRC cells in terms of proliferation, invasion and migration, meanwhile up-regulating PD-L1 expression via inhibiting miR-570. The ZnC-anti-PD1 co-treatment assists in synergically increasing anti-tumor efficacy in CRC therapy.


Assuntos
Carnosina , Neoplasias Colorretais , MicroRNAs , Camundongos , Animais , Carnosina/farmacologia , Carnosina/uso terapêutico , Camundongos Endogâmicos C57BL , Antígeno B7-H1 , Imunoterapia , Fatores Imunológicos , Neoplasias Colorretais/tratamento farmacológico , Proliferação de Células , Movimento Celular , Microambiente Tumoral
7.
Biomed Pharmacother ; 151: 113157, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35605299

RESUMO

Zinc (Zn) has an existence within large quantities in the human brain, while accumulating within synaptic vesicle. There is growing evidence that Zn metabolic equilibrium breaking participates into different diseases (e.g., vascular dementia, carcinoma, Alzheimer's disease). Carnosine refers to an endogenic dipeptide abundant in skeletal muscle and brains and exerts a variety of positive influences (e.g., carcinoma resistance, crosslinking resistance, metal chelation and oxidation limitation). A complex of Zn and carnosine, called Zinc-L-carnosine (ZnC), has been extensively employed within Zn supplement therapeutic method and the treating approach for ulcers. ZnC has been shown to play a variety of roles in the body, including inhibiting intracellular reactive oxygen species(ROS) and free radical levels, inhibiting inflammation, supplementing zinc enzymes and promoting wound healing and mucosal cell repair. The present study conducting a reviewing process for the advances of ZnC in tumor adjuvant therapy.


Assuntos
Carcinoma , Carnosina , Compostos Organometálicos , Carcinoma/tratamento farmacológico , Carnosina/análogos & derivados , Carnosina/farmacologia , Carnosina/uso terapêutico , Humanos , Compostos Organometálicos/farmacologia , Zinco/metabolismo , Compostos de Zinco
8.
Molecules ; 26(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072474

RESUMO

Ficus deltoidea var. deltoidea is used as traditional medicine for diabetes, inflammation, and nociception. However, the antimutagenic potential and cytoprotective effects of this plant remain unknown. In this study, the mutagenic and antimutagenic activities of F. deltoidea aqueous extract (FDD) on both Salmonella typhimurium TA 98 and TA 100 strains were assessed using Salmonella mutagenicity assay (Ames test). Then, the cytoprotective potential of FDD on menadione-induced oxidative stress was determined in a V79 mouse lung fibroblast cell line. The ferric-reducing antioxidant power (FRAP) assay was conducted to evaluate FDD antioxidant capacity. Results showed that FDD (up to 50 mg/mL) did not exhibit a mutagenic effect on either TA 98 or TA 100 strains. Notably, FDD decreased the revertant colony count induced by 2-aminoanthracene in both strains in the presence of metabolic activation (p < 0.05). Additionally, pretreatment of FDD (50 and 100 µg/mL) demonstrated remarkable protection against menadione-induced oxidative stress in V79 cells significantly by decreasing superoxide anion level (p < 0.05). FDD at all concentrations tested (12.5-100 µg/mL) exhibited antioxidant power, suggesting the cytoprotective effect of FDD could be partly attributed to its antioxidant properties. This report highlights that F. deltoidea may provide a chemopreventive effect on mutagenic and oxidative stress inducers.


Assuntos
Antimutagênicos/química , Antioxidantes/química , Ficus/metabolismo , Extratos Vegetais/química , Animais , Ânions , Linhagem Celular , Cricetulus , Diabetes Mellitus , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glutationa , Camundongos , Mutagênese/efeitos dos fármacos , Testes de Mutagenicidade , Mutagênicos , Estresse Oxidativo , Salmonella typhimurium/efeitos dos fármacos , Sais de Tetrazólio/química , Tiazóis/química , Vitamina K 3/química , Água
9.
Saudi J Biol Sci ; 28(5): 2987-2994, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025176

RESUMO

Oxidative stress, DNA damage, and unresolved inflammation are the predisposing factors of many chronic and degenerative diseases, including cancer. Stingless bee honey (SBH) is recognized to have high medicinal value by traditional medicine practitioners and has been used to treat various illnesses traditionally. This study aimed to determine the antioxidant, anti-inflammatory, and genoprotective effects of SBH by using in vitro cell culture models. The sugar content, total phenolic content, radical scavenging activity, and ferric reducing antioxidant power (FRAP) of SBH were determined in this study. Then, the protective effect of SBH against hydrogen peroxide (H2O2)-induced cell death and DNA damage was studied by using WIL2-NS human lymphoblastoid cell line, while the lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophages cell line was used to study the anti-inflammatory effects of SBH. Results from this present study showed that the major sugar contents of SBH were fructose (19.39 + 0.01%) and glucose (14.03 ± 0.03%). Besides, the total phenolic content, the radical scavenging activity, and the FRAP value of SBH were 15.38 ± 0.02 mg GAE/100 g of honey, 34.04 ± 0.21%, and 206.77 + 1.76 µM AAE/100 g honey respectively. Pretreatment with SBH protected WIL2-NS cells from H2O2-induced cell death and DNA damage (p < 0.001). Moreover, SBH was also able to attenuate the production of nitric oxide by inhibiting the expression of inducible nitric oxide synthase in LPS-induced RAW 264.7 cells (p < 0.001). In conclusion, SBH is rich in total phenolic content and possesses strong antioxidant, anti-inflammatory, and genoprotective properties. Our current findings suggest that SBH might be useful in the prevention and treatment of many diseases caused by oxidative stress and inflammation assuming the observed effects are also achievable in vivo.

10.
Free Radic Res ; 54(5): 330-340, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32366187

RESUMO

Zinc L-carnosine (ZnC) is a chelated compound of zinc and L-carnosine. The present study aims to determine the protective effects of ZnC against hydrogen peroxide (H2O2)-induced oxidative stress and genomic damage in CCD-18co human normal colon fibroblast cells. Generally, cells were pretreated with ZnC (0-100 µM) for 24 h before challenged with 20 µM of H2O2 for 1 h to induce oxidative damage. Results showed that pretreatment with ZnC was able to reduce the intracellular ROS level in CCD-18co cells after being challenged with H2O2. Moreover, pretreatment with ZnC demonstrated protection from H2O2-induced DNA strand breaks and micronucleus formation. Our current findings revealed that pretreatment with ZnC could induce the activation of MTF-1 signaling pathway and expression of metallothionein (MT) in a dose-dependent manner. However, ZnC did not have any effects on Nrf2 signaling pathway and the expression of glutathione, superoxide dismutase 1, and glutamate-cysteine ligase catalytic subunit (GCLC). Furthermore, pretreatment with ZnC did not induce the expression of OGG1 and PARP-1 in CCD-18co cells, suggesting that these two DNA repairing enzymes are not related to the genoprotective effects of ZnC. Since the expression of MT has been demonstrated to protect cells from oxidative DNA damage induced by various genotoxic agents, the genoprotective effects of ZnC might be due to the ability of ZnC to induce the expression of MT. In conclusion, ZnC pretreatment was able to protect CCD-18co cells from H2O2-induced genomic damage via the activation of the MTF-1 signalling pathway and the induction of MT expression.


Assuntos
Carnosina/farmacologia , Complexos de Coordenação/farmacologia , Fibroblastos/efeitos dos fármacos , Peróxido de Hidrogênio/antagonistas & inibidores , Substâncias Protetoras/farmacologia , Zinco/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dano ao DNA , Relação Dose-Resposta a Droga , Humanos , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade
11.
Biol Trace Elem Res ; 198(2): 464-471, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32146577

RESUMO

Zinc L-carnosine (ZnC) is the chelate form of zinc and L-carnosine and is one of the zinc supplements available in the market. This study aims to determine the protective effects of ZnC against L-buthionine sulfoximine (BSO)-induced oxidative stress in CCD-18co human normal colon fibroblast cell line. CCD-18co cells were pretreated with ZnC (0-100 µM) for 24 h before the induction of oxidative stress by BSO (1 mM) for another 24 h. Results from this present study demonstrated that ZnC up to the concentration of 100 µM was not cytotoxic to CCD-18co cells. Induction with BSO significantly increased the intracellular reactive oxygen species (ROS) levels and reduced the intracellular glutathione (GSH) levels in CCD-18co cells. Pretreatment with ZnC was able to attenuate the increment in intracellular ROS level in CCD-18co cells significantly in a concentration-dependent manner. However, ZnC did not have any effects on intracellular GSH levels and Nrf2 activation. Mechanistically, pretreatment with ZnC was able to upregulate the expression of metallothionein (MT) and superoxide dismutase 1 (SOD1) in CCD-18co cells. Results from dual-luciferase reporter gene assay reported that ZnC was able to increase the MRE-mediated relative luciferase activities in a concentration-dependent manner, suggesting that the induction of MT expression by ZnC was due to the activation of MTF-1 signaling pathway. Taken together, our current findings suggest that ZnC can protect CCD-18co cells from BSO-induced oxidative stress via the induction of MT and SOD1 expression.


Assuntos
Carnosina , Butionina Sulfoximina/farmacologia , Carnosina/análogos & derivados , Glutationa/metabolismo , Humanos , Metalotioneína/metabolismo , Compostos Organometálicos , Estresse Oxidativo , Superóxido Dismutase , Superóxido Dismutase-1 , Compostos de Zinco
12.
Immunopharmacol Immunotoxicol ; 39(5): 259-267, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28697633

RESUMO

CONTEXT: Zinc L-carnosine (ZnC) is a chelate of Zn and L-carnosine and is used clinically in the treatment of peptic ulcer. OBJECTIVE: In this study, we aim to investigate the involvement of heme oxygenase-1 (HO-1) in the anti-inflammatory effects of ZnC in lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophages. MATERIALS AND METHODS: We used immunoblotting analysis to evaluate the involvement of HO-1 in the anti-inflammatory effects of ZnC and the signaling pathway involved was measured using Dual luciferase reporter assay. RESULTS: Results from immunoblotting analysis demonstrated that pretreatment of cells with ZnC enhanced the expression of HO-1 in RAW 264.7 cells. Pretreatment of cells with HO-1 inhibitor (tin protoporphyrin IX dichloride) significantly attenuated the inhibitory effects of ZnC on nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) expression and NF-κB activation in LPS-induced RAW 264.7 cells, suggesting that HO-1 play an important role in the suppression of inflammatory responses induced by ZnC. Furthermore, results from co-immunoprecipitation of Nrf2 and Keap1 and dual luciferase reporter assay showed that pretreatment of ZnC was able to activate the Nrf2 signaling pathway. Treatment of cells with p38 inhibitor (SB203580), c-Jun N-terminal kinase inhibitor (SP600125), and MEK 1/2 inhibitor (U0126) did not significantly suppress the induction of HO-1 by ZnC. Moreover, our present findings suggest that the effects of ZnC on NO production, HO-1 expression, and Nrf2 activation were attributed to its Zn subcomponent, but not l-carnosine. CONCLUSION: Pretreatment with ZnC was able to activate Nrf2/HO-1 signaling pathway, thus suppressing the expression of inflammatory mediators, such as NO and iNOS in LPS-induced RAW 264.7 cells.


Assuntos
Carnosina/análogos & derivados , Heme Oxigenase-1/biossíntese , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas de Membrana/biossíntese , Fator 2 Relacionado a NF-E2/metabolismo , Compostos Organometálicos/farmacologia , Animais , Carnosina/farmacologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/patologia , Camundongos , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/biossíntese , Células RAW 264.7 , Compostos de Zinco/farmacologia
13.
Nutr Cancer ; 69(2): 201-210, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28094570

RESUMO

Cancer is one of the major causes of death worldwide, and the incidence and mortality rates of cancer are expected to rise tremendously in the near future. Despite a better understanding of cancer biology and advancement in cancer management, current strategies in cancer treatment remain costly and ineffective. Hence, instead of putting more efforts to search for new cancer cures, attention has now been shifted to the development of cancer chemopreventive agents as a preventive measure for cancer formation. It is well known that neoplastic transformation of cells is multifactorial, and the occurrence of oxidative stress, chronic inflammation, and genomic instability events has been implicated in the carcinogenesis of cells. Zinc l-carnosine (ZnC), which is clinically used as gastric ulcer treatment in Japan, has been suggested to have the potential in preventing cancer development. Multiple studies have revealed that ZnC possesses potent antioxidant, anti-inflammatory, and genomic stability enhancement effects. Thus, this review provides some mechanistic insight into the antioxidant, anti-inflammatory, and genomic stability enhancement effects of ZnC in relevance to its chemopreventive potential.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Anticarcinógenos/farmacologia , Antioxidantes/farmacologia , Carnosina/análogos & derivados , Neoplasias/prevenção & controle , Compostos Organometálicos/farmacologia , Animais , Carnosina/farmacologia , Instabilidade Genômica , Humanos , Compostos de Zinco/farmacologia
14.
Biol Trace Elem Res ; 172(2): 458-464, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26749414

RESUMO

This study aimed to investigate the role of the mitogen-activated protein kinases (MAPKs) signaling pathway in the anti-inflammatory effects of zinc carnosine (ZnC) in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Cells were pretreated with ZnC (0-100 µM) for 2 h prior to the addition of LPS (1 µg/ml). Following 24 h of treatment, ZnC was found not to be cytotoxic to RAW 264.7 cells up to the concentration of 100 µM. Our current findings showed that ZnC did not protect RAW 264.7 cells from LPS-induced "respiratory burst". Significant increment in intracellular glutathione (GSH) level and reduction in thiobarbituric acid reactive substances (TBARS) concentration can only be observed in cell pretreated with high doses of ZnC only (50 and 100 µM for GSH and 100 µM only for TBARS). On the other hand, pretreatment of cells with ZnC was able to inhibit LPS-induced inducible nitric oxide synthase and cyclooxygenase-2 expression significantly. Furthermore, results from immunoblotting showed that ZnC was able to suppress nuclear factor-kappaB (NF-κB) activation, and highest suppression can be observed at 100 µM of ZnC pretreatment. However, pretreatment of ZnC did not inhibit the early activation of MAPKs. In conclusion, pretreatment with ZnC was able to inhibit the expression of inflammatory mediators in LPS-induced RAW 264.7 cells, mainly via suppression of NF-κB activation, and is independent of the MAPKs signaling pathway.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Carnosina/análogos & derivados , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno , NF-kappa B/metabolismo , Compostos Organometálicos/farmacologia , Transdução de Sinais , Animais , Carnosina/farmacologia , Células Cultivadas , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Compostos de Zinco/farmacologia
15.
Molecules ; 18(7): 8696-711, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23881054

RESUMO

Three diorganotin(IV) complexes of the general formula R2Sn[RcC(O)N(RN)O] (Rc = aryl, RN = Alkyl) have been synthesized by refluxing in toluene the corresponding diorganotin(IV) oxides with the free ligand N-methyl p-fluorobenzohydroxamic acid, using a Dean and Stark water separator. The ligand was derived from the reaction of the corresponding p-fluorobenzoyl chloride and N-methylhydroxylamine hydrochloride in the presence of sodium hydrogen carbonate. The isolated free ligand and its respective diorganotin compounds have been characterized by elemental analysis, IR and 1H-, 13C-, 119Sn-NMR spectroscopies. The crystal structures of the diorganotin complexes have been confirmed by single crystal X-ray diffraction methods. The investigations carried out on the diorganotin(IV) complexes of N-methyl p-fluorobenzohydroxamic acid confirmed a 1:2 stoichiometry. The complex formation took place through the O,O-coordination via the carbonyl oxygen and subsequent deprotonated hydroxyl group to the tin atom. The crystal structures of three diorganotin complexes were determined and were found to adopt six coordination geometries at the tin centre with coordination to two ligand moieties.


Assuntos
Antineoplásicos , Compostos Orgânicos de Estanho , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Células HCT116 , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Compostos Orgânicos de Estanho/síntese química , Compostos Orgânicos de Estanho/química , Compostos Orgânicos de Estanho/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA