Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl In Vitro Toxicol ; 7(3): 112-128, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34746334

RESUMO

Introduction: Here, we describe the generation of hypotheses for grouping nanoforms (NFs) after inhalation exposure and the tailored Integrated Approaches to Testing and Assessment (IATA) with which each specific hypothesis can be tested. This is part of a state-of-the-art framework to support the hypothesis-driven grouping and read-across of NFs, as developed by the EU-funded Horizon 2020 project GRACIOUS. Development of Grouping Hypotheses and IATA: Respirable NFs, depending on their physicochemical properties, may dissolve either in lung lining fluid or in acidic lysosomal fluid after uptake by cells. Alternatively, NFs may also persist in particulate form. Dissolution in the lung is, therefore, a decisive factor for the toxicokinetics of NFs. This has led to the development of four hypotheses, broadly grouping NFs as instantaneous, quickly, gradually, and very slowly dissolving NFs. For instantaneously dissolving NFs, hazard information can be derived by read-across from the ions. For quickly dissolving particles, as accumulation of particles is not expected, ion toxicity will drive the toxic profile. However, the particle aspect influences the location of the ion release. For gradually dissolving and very slowly dissolving NFs, particle-driven toxicity is of concern. These NFs may be grouped by their reactivity and inflammation potency. The hypotheses are substantiated by a tailored IATA, which describes the minimum information and laboratory assessments of NFs under investigation required to justify grouping. Conclusion: The GRACIOUS hypotheses and tailored IATA for respiratory toxicity of inhaled NFs can be used to support decision making regarding Safe(r)-by-Design product development or adoption of precautionary measures to mitigate potential risks. It can also be used to support read-across of adverse effects such as pulmonary inflammation and subsequent downstream effects such as lung fibrosis and lung tumor formation after long-term exposure.

2.
EFSA J ; 19(8): e06768, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34377190

RESUMO

The EFSA has updated the Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain, human and animal health. It covers the application areas within EFSA's remit, including novel foods, food contact materials, food/feed additives and pesticides. The updated guidance, now Scientific Committee Guidance on nano risk assessment (SC Guidance on Nano-RA), has taken account of relevant scientific studies that provide insights to physico-chemical properties, exposure assessment and hazard characterisation of nanomaterials and areas of applicability. Together with the accompanying Guidance on Technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles (Guidance on Particle-TR), the SC Guidance on Nano-RA specifically elaborates on physico-chemical characterisation, key parameters that should be measured, methods and techniques that can be used for characterisation of nanomaterials and their determination in complex matrices. The SC Guidance on Nano-RA also details aspects relating to exposure assessment and hazard identification and characterisation. In particular, nanospecific considerations relating to in vitro/in vivo toxicological studies are discussed and a tiered framework for toxicological testing is outlined. Furthermore, in vitro degradation, toxicokinetics, genotoxicity, local and systemic toxicity as well as general issues relating to testing of nanomaterials are described. Depending on the initial tier results, additional studies may be needed to investigate reproductive and developmental toxicity, chronic toxicity and carcinogenicity, immunotoxicity and allergenicity, neurotoxicity, effects on gut microbiome and endocrine activity. The possible use of read-across to fill data gaps as well as the potential use of integrated testing strategies and the knowledge of modes or mechanisms of action are also discussed. The Guidance proposes approaches to risk characterisation and uncertainty analysis.

3.
NanoImpact ; 22: 100314, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-35559971

RESUMO

Here we describe the development of an Integrated Approach to Testing and Assessment (IATA) to support the grouping of different types (nanoforms; NFs) of High Aspect Ratio Nanomaterials (HARNs), based on their potential to cause mesothelioma. Hazards posed by the inhalation of HARNs are of particular concern as they exhibit physical characteristics similar to pathogenic asbestos fibres. The approach for grouping HARNs presented here is part of a framework to provide guidance and tools to group similar NFs and aims to reduce the need to assess toxicity on a case-by-case basis. The approach to grouping is hypothesis-driven, in which the hypothesis is based on scientific evidence linking critical physicochemical descriptors for NFs to defined fate/toxicokinetic and hazard outcomes. The HARN IATA prompts users to address relevant questions (at decision nodes; DNs) regarding the morphology, biopersistence and inflammatory potential of the HARNs under investigation to provide the necessary evidence to accept or reject the grouping hypothesis. Each DN in the IATA is addressed in a tiered manner, using data from simple in vitro or in silico methods in the lowest tier or from in vivo approaches in the highest tier. For these proposed methods we provide justification for the critical descriptors and thresholds that allow grouping decisions to be made. Application of the IATA allows the user to selectively identify HARNs which may pose a mesothelioma hazard, as demonstrated through a literature-based case study. By promoting the use of alternative, non-rodent approaches such as in silico modelling, in vitro and cell-free tests in the initial tiers, the IATA testing strategy streamlines information gathering at all stages of innovation through to regulatory risk assessment while reducing the ethical, time and economic burden of testing.


Assuntos
Amianto , Mesotelioma Maligno , Mesotelioma , Nanoestruturas , Amianto/toxicidade , Humanos , Mesotelioma/induzido quimicamente , Nanoestruturas/efeitos adversos , Medição de Risco/métodos
4.
Annu Rev Pharmacol Toxicol ; 61: 203-223, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-32284010

RESUMO

The Risk Assessment Committee of the European Chemicals Agency issued an opinion on classifying titanium dioxide (TiO2) as a suspected human carcinogen upon inhalation. Recent animal studies indicate that TiO2 may be carcinogenic through the oral route. There is considerable uncertainty on the carcinogenicity of TiO2, which may be decreased if its mechanism of action becomes clearer. Here we consider adverse outcome pathways and present the available information on each of the key events (KEs). Inhalation exposure to TiO2 can induce lung tumors in rats via a mechanism that is also applicable to other poorly soluble, low-toxicity particles. To reduce uncertainties regarding human relevance, we recommend gathering information on earlier KEs such as oxidative stress in humans. For oral exposure, insufficient information is available to conclude whether TiO2 can induce intestinal tumors. An oral carcinogenicity study with well-characterized (food-grade) TiO2 is needed, including an assessment of toxicokinetics and early KEs.


Assuntos
Carcinógenos , Nanopartículas , Administração Oral , Animais , Carcinogênese , Humanos , Exposição por Inalação , Ratos , Incerteza
5.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379217

RESUMO

Titanium dioxide (TiO2) is used as a food additive (E171) and can be found in sauces, icings, and chewing gums, as well as in personal care products such as toothpaste and pharmaceutical tablets. Along with the ubiquitous presence of TiO2 and recent insights into its potentially hazardous properties, there are concerns about its application in commercially available products. Especially the nano-sized particle fraction (<100 nm) of TiO2 warrants a more detailed evaluation of potential adverse health effects after ingestion. A workshop organized by the Dutch Office for Risk Assessment and Research (BuRO) identified uncertainties and knowledge gaps regarding the gastrointestinal absorption of TiO2, its distribution, the potential for accumulation, and induction of adverse health effects such as inflammation, DNA damage, and tumor promotion. This review aims to identify and evaluate recent toxicological studies on food-grade TiO2 and nano-sized TiO2 in ex-vivo, in-vitro, and in-vivo experiments along the gastrointestinal route, and to postulate an Adverse Outcome Pathway (AOP) following ingestion. Additionally, this review summarizes recommendations and outcomes of the expert meeting held by the BuRO in 2018, in order to contribute to the hazard identification and risk assessment process of ingested TiO2.


Assuntos
Corantes/efeitos adversos , Exposição Dietética/efeitos adversos , Nanopartículas/efeitos adversos , Titânio/efeitos adversos , Animais , Corantes/química , Corantes/farmacocinética , Humanos , Nanopartículas/química , Titânio/química , Titânio/farmacocinética , Testes de Toxicidade
6.
Nanotoxicology ; 14(7): 985-1007, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32619159

RESUMO

Recent studies reported adverse liver effects and intestinal tumor formation after oral exposure to titanium dioxide (TiO2). Other oral toxicological studies, however, observed no effects on liver and intestine, despite prolonged exposure and/or high doses. In the present assessment, we aimed to better understand whether TiO2 can induce such effects at conditions relevant for humans. Therefore, we focused not only on the clinical and histopathological observations, but also used Adverse Outcome Pathways (AOPs) to consider earlier steps (Key Events). In addition, aiming for a more accurate risk assessment, the available information on organ concentrations of Ti (resulting from exposure to TiO2) from oral animal studies was compared to recently reported concentrations found in human postmortem organs. The overview obtained with the AOP approach indicates that TiO2 can trigger a number of key events in liver and intestine: Reactive Oxygen Species (ROS) generation, induction of oxidative stress and inflammation. TiO2 seems to be able to exert these early effects in animal studies at Ti liver concentrations that are only a factor of 30 and 6 times higher than the median and highest liver concentration found in humans, respectively. This confirms earlier conclusions that adverse effects on the liver in humans as a result of (oral) TiO2 exposure cannot be excluded. Data for comparison with Ti levels in human intestinal tissue, spleen and kidney with effect concentrations were too limited to draw firm conclusions. The Ti levels, though, are similar or higher than those found in liver, suggesting these tissues may be relevant too.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Nanopartículas/toxicidade , Baço/efeitos dos fármacos , Titânio/toxicidade , Administração Oral , Animais , Aditivos Alimentares/química , Aditivos Alimentares/metabolismo , Aditivos Alimentares/toxicidade , Humanos , Inflamação , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Nanopartículas/química , Nanopartículas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Baço/metabolismo , Baço/patologia , Titânio/química , Titânio/metabolismo
7.
Nanomedicine (Lond) ; 10(10): 1599-608, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25694061

RESUMO

AIM: A horizon scan of nanomedicinal product on the market or undergoing clinical investigation by analyzing the current nanomedicinal landscape. MATERIALS & METHODS: The horizon scan includes a search of literature, clinical trial registries and the internet. RESULTS: This horizon scan yielded 175 nanomedicinal products. Most products were intended for cancer treatment, followed by infectious diseases. Polymer conjugates, liposomes and protein nanoparticles were the most used structures for nanomedicinal products. CONCLUSIONS: This paper provides an overview of nanomedicinal products on the market or undergoing clinical investigation, their application areas and specific properties.


Assuntos
Nanomedicina/tendências , Previsões , Humanos
8.
Food Chem Toxicol ; 43(1): 31-40, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15582193

RESUMO

Food is considered a major route of exposure to many contaminants. Only the fraction of the contaminant that is released from the food (bioaccessibility) and is bioavailable can exert toxic effects. Insufficient knowledge on the bioavailability may hamper an accurate risk assessment of ingested contaminants in humans. This paper describes the applicability of an in vitro digestion model allowing for measurement of the bioaccessibility of ingested mycotoxins from food as an indicator of oral bioavailability. Bioaccessibility of aflatoxin B(1) from peanut slurry and ochratoxin A from buckwheat was high, 94% and 100%, respectively, and could be determined reproducibly. With the in vitro digestion model, the bioaccessibilities of aflatoxin B(1) and ochratoxin A in the presence of four different absorption modulators were in five out of six situations in accordance with the in vivo effects in humans and animals. By determining the effect of chlorophyllin on the transport of aflatoxin B(1) across the intestinal Caco-2 cells, also the sixth combination was in agreement with data in humans. Hence, the in vitro digestion model, combined with Caco-2 cells, is a powerful experimental tool, which can aid to a more accurate risk assessment of ingested contaminants.


Assuntos
Aflatoxina B1/farmacocinética , Carcinógenos/farmacocinética , Fenômenos Fisiológicos do Sistema Digestório , Contaminação de Alimentos , Ocratoxinas/farmacocinética , Aflatoxina B1/toxicidade , Arachis/química , Disponibilidade Biológica , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Carcinógenos/toxicidade , Clorofilídeos/farmacologia , Qualidade de Produtos para o Consumidor , Fenômenos Fisiológicos do Sistema Digestório/efeitos dos fármacos , Fagopyrum/química , Humanos , Técnicas In Vitro , Absorção Intestinal/efeitos dos fármacos , Modelos Biológicos , Ocratoxinas/toxicidade , Reprodutibilidade dos Testes , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA