Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 126(45): 9246-9260, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36326184

RESUMO

Despite its success as an anticancer drug, cisplatin suffers from resistance and produces side effects. To overcome these limitations, amino-acid-linked cisplatin analogues have been investigated. Lysine-linked cisplatin, Lysplatin, (Lys)PtCl2, exhibited outstanding reactivity toward DNA and RNA that differs from that of cisplatin. To gain insight into its differing reactivity, the structure of Lysplatin is examined here using infrared multiple photon dissociation (IRMPD) action spectroscopy. To probe the influence of the local chemical environment on structure, the deprotonated and sodium-cationized Lysplatin complexes are examined. Electronic structure calculations are performed to explore possible modes of binding of Lys to Pt, their relative stabilities, and to predict their infrared spectra. Comparisons of the measured IRMPD and predicted IR spectra elucidate the structures contributing to the experimental spectra. Coexistence of two modes of binding of Lys to Pt is found where Lys binds via the backbone and side-chain amino nitrogen atoms, NNs, or to the backbone amino and carboxylate oxygen atoms, NO-. Glycine-linked cisplatin and arginine-linked cisplatin complexes have previously been found to bind only via the NO- binding mode. Present results suggest that the NNs binding conformers may be key to the outstanding reactivity of Lysplatin toward DNA and RNA.


Assuntos
Lisina , Platina , Lisina/química , Cisplatino , Espectrofotometria Infravermelho/métodos , RNA
2.
Phys Chem Chem Phys ; 23(38): 21959-21971, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34569570

RESUMO

Cisplatin, (NH3)2PtCl2, has been known as a successful metal-based anticancer drug for more than half a century. Its analogue, Argplatin, arginine-linked cisplatin, (Arg)PtCl2, is being investigated because it exhibits reactivity towards DNA and RNA that differs from that of cisplatin. In order to understand the basis for its altered reactivity, the deprotonated and sodium cationized forms of Argplatin, [(Arg-H)PtCl2]- and [(Arg)PtCl2 + Na]+, are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy in the IR fingerprint and hydrogen-stretching regions. Complementary electronic structure calculations are performed using density functional theory approaches to characterize the stable structures of these complexes and to predict their infrared spectra. Comparison of the theoretical IR spectra predicted for various stable conformations of these Argplatin complexes to their measured IRMPD spectra enables determination of the binding mode(s) of Arg to the Pt metal center to be identified. Arginine is found to bind to Pt in a bidentate fashion to the backbone amino nitrogen and carboxylate oxygen atoms in both the [(Arg-H)PtCl2]- and [(Arg)PtCl2 + Na]+ complexes, the NO- binding mode. The neutral side chain of Arg also interacts with the Pt center to achieve additional stabilization in the [(Arg-H)PtCl2]- complex. In contrast, Na+ binds to both chlorido ligands in the [(Arg)PtCl2 + Na]+ complex and the protonated side chain of Arg is stabilized via hydrogen-bonding interactions with the carboxylate moiety. These findings are consistent with condensed-phase results, indicating that the NO- binding mode of arginine to Pt is preserved in the electrospray ionization process even under variable pH and ionic strength.


Assuntos
Antineoplásicos/química , Arginina/química , Cisplatino/química , Óxido Nítrico/química , Platina/química , Sítios de Ligação , Teoria da Densidade Funcional , Estrutura Molecular , Espectrofotometria Infravermelho
3.
J Am Soc Mass Spectrom ; 30(9): 1758-1767, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31286444

RESUMO

Gas-phase conformations of the sodium-cationized forms of the 2'-deoxycytidine and cytidine mononucleotides, [pdCyd+Na]+ and [pCyd+Na]+, are examined by infrared multiple photon dissociation action spectroscopy. Complimentary electronic structure calculations at the B3LYP/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) level of theory provide candidate conformations and their respective predicted IR spectra for comparison across the IR fingerprint and hydrogen-stretching regions. Comparisons of the predicted IR spectra and the measured infrared multiple photon dissociation action spectra provide insight into the impact of sodium cationization on intrinsic mononucleotide structure. Further, comparison of present results with those reported for the sodium-cationized cytidine nucleoside analogues elucidates the impact of the phosphate moiety on gas-phase structure. Across the neutral, protonated, and sodium-cationized cytidine mononucleotides, a preference for stabilization of the phosphate moiety and nucleobase orientation is observed, although the details of this stabilization differ with the state of cationization. Several low-energy conformations of [pdCyd+Na]+ and [pCyd+Na]+ involving several different orientations of the phosphate moiety and sugar puckering modes are observed experimentally.


Assuntos
Citidina/química , DNA/química , RNA/química , Sódio/química , Espectrofotometria Infravermelho/métodos , Cátions Monovalentes/química , Monofosfato de Citidina/química , Desoxicitidina Monofosfato/química , Gases/química , Conformação de Ácido Nucleico
4.
J Am Soc Mass Spectrom ; 30(5): 832-845, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30850972

RESUMO

Modified nucleosides have been an important target for pharmaceutical development for the treatment of cancer, herpes simplex virus, and the human immunodeficiency virus (HIV). Amongst these nucleoside analogues, those based on 2',3'-dideoxyribose sugars are quite common, particularly in anti-HIV applications. The gas-phase structures of several protonated 2',3'-dideoxyribose nucleosides are examined in this work and compared with those of the analogous protonated DNA, RNA, and arabinose nucleosides to elucidate the influence of the 2'- and combined 2',3'-hydroxyl groups on intrinsic structure. Infrared multiple photon dissociation (IRMPD) action spectra are collected for the protonated 2',3'-dideoxy forms of adenosine, guanosine, cytidine, thymidine and uridine, [ddAdo+H]+, [ddGuo+H]+, [ddCyd+H]+, [ddThd+H]+, and [ddUrd+H]+, in the IR fingerprint and hydrogen-stretching regions. Molecular mechanics conformational searching followed by electronic structure calculations generates low-energy conformers of the protonated 2',3'-dideoxynucleosides and corresponding predicted linear IR spectra to facilitate interpretation of the measured IRMPD action spectra. These experimental IRMPD spectra and theoretical calculations indicate that the absence of the 2'- and 3'-hydroxyls largely preserves the protonation preferences of the canonical forms. The spectra and calculated structures indicate a slight preference for C3'-endo sugar puckering. The presence of the 3'- and further 2'-hydroxyl increases the available intramolecular hydrogen-bonding opportunities and shifts the sugar puckering modes for all nucleosides but the guanosine analogues to a slight preference for C2'-endo over C3'-endo. Graphical Abstract.


Assuntos
Antivirais/química , Arabinose/análogos & derivados , Desoxirribose/análogos & derivados , Radical Hidroxila/análise , Nucleosídeos/análogos & derivados , Arabinose/análise , Desoxirribose/análise , Análise de Fourier , Raios Infravermelhos , Espectrometria de Massas , Modelos Moleculares , Conformação Molecular , Prótons , Purinas/química , Pirimidinas/química
5.
J Am Soc Mass Spectrom ; 28(11): 2438-2453, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28895083

RESUMO

The gas-phase conformations of transition metal cation-uracil complexes, [Ura+Cu]+ and [Ura+Ag]+, were examined via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra were measured over the IR fingerprint and hydrogen-stretching regions. Structures and linear IR spectra of the stable tautomeric conformations of these complexes were initially determined at the B3LYP/6-31G(d) level. The four most stable structures computed were also examined at the B3LYP/def2-TZVPPD level to improve the accuracy of the predicted IR spectra. Two very favorable modes of binding are found for [Ura+Cu]+ and [Ura+Ag]+ that involve O2N3 bidentate binding to the 2-keto-4-hydroxy minor tautomer and O4 monodentate binding to the canonical 2,4-diketo tautomer of Ura. Comparisons between the measured IRMPD and calculated IR spectra enable elucidation of the conformers present in the experiments. These comparisons indicate that both favorable binding modes are represented in the experimental tautomeric conformations of [Ura+Cu]+ and [Ura+Ag]+. B3LYP suggests that Cu+ exhibits a slight preference for O4 binding, whereas Ag+ exhibits a slight preference for O2N3 binding. In contrast, MP2 suggests that both Cu+ and Ag+ exhibit a more significant preference for O2N3 binding. The relative band intensities suggest that O4 binding conformers comprise a larger portion of the population for [Ura+Ag]+ than [Ura+Cu]+. The dissociation behavior and relative stabilities of the [Ura+M]+ complexes, M+ = Cu+, Ag+, H+, and Na+) are examined via energy-resolved collision-induced dissociation experiments. The IRMPD spectra, dissociation behaviors, and binding preferences of Cu+ and Ag+ are compared with previous and present results for those of H+ and Na+. Graphical Abstract ᅟ.

6.
J Am Soc Mass Spectrom ; 28(8): 1638-1646, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28497356

RESUMO

The gas-phase conformations of the protonated forms of the DNA and RNA cytosine mononucleotides, [pdCyd+H]+ and [pCyd+H]+, are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy over the IR fingerprint and hydrogen-stretching regions complemented by electronic structure calculations. The low-energy conformations of [pdCyd+H]+ and [pCyd+H]+ and their relative stabilities are computed at the B3LYP/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) and MP2(full)/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) levels of theory. Comparisons of the measured IRMPD action spectra and B3LYP/6-311+G(d,p) linear IR spectra computed for the low-energy conformers allow the conformers present in the experiments to be determined. Similar to that found in previous IRMPD action spectroscopy studies of the protonated forms of the cytosine nucleosides, [dCyd+H]+ and [Cyd+H]+, both N3 and O2 protonated cytosine mononucleotides exhibiting an anti orientation of cytosine are found to coexist in the experimental population. The 2'-hydroxyl substituent does not significantly influence the most stable conformations of [pCyd+H]+ versus those of [pdCyd+H]+, as the IRMPD spectral profiles of [pdCyd+H]+ and [pCyd+H]+ are similar. However, the presence of the 2'-hydroxyl substituent does influence the relative intensities of the measured IRMPD bands. Comparisons to IRMPD spectroscopy studies of the deprotonated forms of the cytosine mononucleotides, [pdCyd-H]- and [pCyd-H]-, provide insight into the effects of protonation versus deprotonation on the conformational features of the nucleobase and sugar moieties. Likewise, comparisons to results of IRMPD spectroscopy studies of the protonated cytosine nucleosides provide insight into the influence of the phosphate moiety on structure. Comparison with previous ion mobility results shows the superiority of IRMPD spectroscopy for distinguishing various protonation sites. Graphical Abstract ᅟ.


Assuntos
Nucleotídeos de Citosina/química , Prótons , Espectrofotometria Infravermelho , Citosina/química , Gases/química , Modelos Moleculares , Conformação Molecular , Nitrogênio/química , Oxigênio/química , Fótons , Espectrofotometria Infravermelho/métodos
7.
J Phys Chem B ; 121(16): 4048-4060, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28355483

RESUMO

2'-Deoxyguanosine (dGuo) and guanosine (Guo) are fundamental building blocks of DNA and RNA nucleic acids. In order to understand the effects of sodium cationization on the gas-phase conformations and stabilities of dGuo and Guo, infrared multiple photon dissociation (IRMPD) action spectroscopy experiments and complementary electronic structure calculations are performed. The measured IRMPD spectra of [dGuo+Na]+ and [Guo+Na]+ are compared to calculated IR spectra predicted for the stable low-energy structures computed for these species to determine the most favorable sodium cation binding sites, identify the structures populated in the experiments, and elucidate the influence of the 2'-hydroxyl substituent on the structures and IRMPD spectral features. These results are compared with those from a previous IRMPD study of the protonated guanine nucleosides to elucidate the differences between sodium cationization and protonation on structure. Energy-resolved collision-induced dissociation (ER-CID) experiments and survival yield analyses of protonated and sodium cationized dGuo and Guo are performed to compare the effects of these cations toward activating the N-glycosidic bonds of these nucleosides. For both [dGuo+Na]+ and [Guo+Na]+, the gas-phase structures populated in the experiments are found to involve bidentate binding of the sodium cation to the O6 and N7 atoms of guanine, forming a 5-membered chelation ring, with guanine found in both anti and syn orientations and C2'-endo (2T3 or 3T2) puckering of the sugar. The ER-CID results, IRMPD yields and the computed C1'-N9 bond lengths indicate that sodium cationization activates the N-glycosidic bond less effectively than protonation for both dGuo and Guo. The 2'-hydroxyl substituent of Guo is found to impact the preferred structures very little except that it enables a 2'OH···3'OH hydrogen bond to be formed, and stabilizes the N-glycosidic bond relative to that of dGuo in both the sodium cationized and protonated complexes.


Assuntos
Desoxiguanosina/química , Guanina/química , Guanosina/química , Sódio/química , Sítios de Ligação , Cátions Monovalentes/química , Glicosídeos/química , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Fotólise
8.
J Phys Chem B ; 120(34): 8892-904, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27494378

RESUMO

The influence of noncovalent interactions with a sodium cation on the gas-phase structures and N-glycosidic bond stabilities of 2'-deoxyadenosine (dAdo) and adenosine (Ado), [dAdo+Na](+) and [Ado+Na](+), are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and energy-resolved collision-induced dissociation (ER-CID) experiments. ER-CID experiments are also performed on the protonated forms of these nucleosides, [dAdo+H](+) and [Ado+H](+), for comparison purposes. Complementary electronic structure calculations are performed to determine the structures and relative stabilities of the stable low-energy conformations of the sodium cationized nucleoside complexes and to predict their IR spectra. Comparison between the measured IRMPD action spectra and calculated IR spectra enables the conformations of the sodium cationized nucleosides present in the experiments to be elucidated. The influence of sodium cationization versus protonation on the structures and IR spectra is elucidated by comparison to IRMPD and theoretical results previously reported for the protonated forms of these nucleosides. The influence of sodium cationization versus protonation on the glycosidic bond stability of the adenine nucleosides is determined by comparison of the ER-CID behavior of these systems. All structures present in the experiments are found to involve tridentate binding of Na(+) to the N3, O4', and O5' atoms forming favorable 5- and 6-membered chelation rings, which requires that adenine rotate to a syn configuration. This mode of sodium cation binding results in moderate flexibility of the sugar moiety such that the sugar puckering of the conformations present varies between C2'-endo and O4'-endo. Sodium cationization is found to be less effective toward activating the N-glycosidic bond than protonation for both dAdo and Ado. Both the IRMPD yields and ER-CID behavior indicate that the 2'-hydroxyl substituent of Ado stabilizes the N-glycosidic bond relative to that of dAdo.


Assuntos
Adenosina/química , Desoxiadenosinas/química , Glicosídeos/química , Prótons , Sódio/química , Cátions/química , Gases/química , Conformação Molecular , Teoria Quântica
9.
J Phys Chem B ; 120(20): 4616-24, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27138137

RESUMO

Infrared multiple photon dissociation (IRMPD) action spectroscopy experiments combined with theoretical calculations are performed to investigate the stable gas-phase conformations of the protonated adenine mononucleotides, [pdAdo+H](+) and [pAdo+H](+). Conformations that are present in the experiments are elucidated via comparative analyses of the experimental IRMPD spectra and the B3LYP/6-311+G(d,p) IR spectra predicted for the conformers optimized at this level of theory. N3 protonation is preferred as it induces base rotation, which allows a strong hydrogen bond to be formed between the excess proton of adenine and the phosphate moiety. In contrast, both N1 and N7 protonation are predicted to be >35 kJ/mol less favorable than N3 protonation. Only N3 protonated conformers are present in the experiments in measurable abundance. Both the low-energy conformers computed and the experimental IRMPD spectra of [pdAdo+H](+) and [pAdo+H](+) indicate that the 2'-hydroxyl moiety does not significantly impact the structure of the most stable conformer or the IRMPD spectral profile of [pAdo+H](+) vs that of [pdAdo+H](+). However, the 2'-hydroxyl leads to a 3-fold enhancement in the IRMPD yield of [pAdo+H](+) in the fingerprint region. Comparison of present results to those reported in a previous IRMPD study of the analogous protonated adenine nucleosides allows the effects of the phosphate moiety on the gas-phase conformations to be elucidated.


Assuntos
Monofosfato de Adenosina/química , Nucleotídeos de Desoxiadenina/química , Ligação de Hidrogênio , Nitrogênio/química , Prótons , Espectrofotometria Infravermelho
10.
J Am Soc Mass Spectrom ; 27(3): 410-21, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26676730

RESUMO

The gas-phase structures of protonated thymidine, [dThd + H](+), and its modified form, protonated 5-methyluridine, [Thd + H](+), are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy combined with electronic structure calculations. IRMPD action spectra are measured over the ranges extending from ~600 to 1900 cm(-1) and ~2800 to 3800 cm(-1) using the FELIX free electron laser and an optical parametric oscillator/amplifier (OPO/OPA) laser system, respectively. Comparisons between the B3LYP/6-311+G(d,p) linear IR spectra calculated for the stable low-energy conformers and the measured IRMPD spectra are used to determine the most favorable tautomeric conformations of [dThd + H](+) and [Thd + H](+) and to identify those populated in the experiments. Both B3LYP and MP2 levels of theory predict a minor 2,4-dihydroxy tautomer as the ground-state conformer of [dThd + H](+) and [Thd + H](+) indicating that the 2'-hydroxyl substituent of Thd does not exert a significant impact on the structural features. [dThd + H](+) and [Thd + H](+) share parallel IRMPD spectral profiles and yields in both the FELIX and OPO regions. Comparisons between the measured IRMPD and calculated IR spectra suggest that minor 2,4-dihydroxy tautomers and O2 protonated conformers of [dThd + H](+) and [Thd + H](+) are populated in the experiments. Comparison of this work to our previous IRMPD spectroscopy study of protonated 2'-deoxyuridine and uridine suggests that the 5-methyl substituent alters the preferences of O2 versus O4 protonation.


Assuntos
Oxigênio/química , Prótons , Timidina/química , Uridina/análogos & derivados , Gases/química , Isomerismo , Espectrometria de Massas , Metilação , Modelos Moleculares , Uridina/química
11.
Phys Chem Chem Phys ; 17(39): 25978-88, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26225730

RESUMO

The gas-phase conformations of protonated uridine, [Urd+H](+), and its modified form, protonated 2'-deoxyuridine, [dUrd+H](+), generated by electrospray ionization are investigated using infrared multiple photon dissociation (IRMPD) action spectroscopy techniques. IRMPD action spectra of [Urd+H](+) and [dUrd+H](+) are measured over the IR fingerprint and hydrogen-stretching regions. [Urd+H](+) and [dUrd+H](+) exhibit very similar IRMPD spectral profiles. However, the IRMPD yields of [Urd+H](+) exceed those of [dUrd+H](+) in both the IR fingerprint and hydrogen-stretching regions. The measured spectra are compared to the linear IR spectra predicted for the stable low-energy structures of these species computed at the B3LYP/6-311+G(d,p) level of theory to determine the tautomeric conformations populated by electrospray ionization. Both B3LYP and MP2 methods find O4 and O2 protonated canonical as well as 2,4-dihydroxy tautomers among the stable low-energy structures of [Urd+H](+) and [dUrd+H](+). Comparison between the measured IRMPD and calculated linear IR spectra suggests that these species exist in their ring-closed forms and that both 2,4-dihydroxy tautomers as well as O4 protonated canonical conformers coexist in the population generated by electrospray ionization for both [Urd+H](+) and [dUrd+H](+). The 2'-deoxy modification of [dUrd+H](+) reduces the variety of 2,4-dihydroxy tautomers populated in the experiments vs. those of [Urd+H](+).


Assuntos
Desoxiuridina/química , Prótons , Uridina/química , Gases/química , Isomerismo , Modelos Moleculares , Conformação Molecular , Espectrofotometria Infravermelho
12.
J Phys Chem B ; 119(18): 5773-84, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25874502

RESUMO

Infrared multiple photon dissociation action spectra of the protonated forms of the cytidyl nucleosides, 2'-deoxycytidine, [dCyd+H](+), and cytidine, [Cyd+H](+), are acquired over the IR fingerprint and hydrogen-stretching regions. Electronic structure calculations are performed at the B3LYP/6-311+G(d,p) level to determine the stable low-energy tautomeric conformations of these species generated upon electrospray ionization (ESI) and to generate the linear IR absorption spectra of these protonated nucleosides. Comparison between the experimental and theoretical spectra allows the tautomeric conformations of [dCyd+H](+) and [Cyd+H](+) populated by ESI to be determined. B3LYP predicts N3 as the preferred protonation site for both [dCyd+H](+) and [Cyd+H](+), whereas MP2 suggests that protonation at O2 is more favorable. The 2'-hydroxyl substituent does not significantly alter the structures of the B3LYP N3 and MP2 O2 protonated ground tautomeric conformations of [dCyd+H](+) vs [Cyd+H](+). [dCyd+H](+) and [Cyd+H](+) exhibit very similar spectral signatures in both regions. Nonetheless, the 2'-hydroxyl does affect the relative intensities of the IRMPD bands of [dCyd+H](+) vs [Cyd+H](+). The spectral features observed in the hydrogen-stretching region complement those of the fingerprint region and allow the N3 and O2 protonated tautomeric conformations to be readily distinguished. Comparison between the measured and computed spectra indicates that both N3 and O2 protonated tautomeric conformations coexist in the experiments, and the populations are dominated by the most stable N3 and O2 protonated tautomeric conformations. Least-squares fitting of the IRMPD spectra to the IR spectra for these most stable conformers suggests relative populations of ∼55% N3 vs 45% O2 protonated conformers of [dCyd+H](+), whereas ∼47% N3 vs 53% O2 protonated conformers of [Cyd+H](+). This change in the preferred site of protonation indicates that the 2'-hydroxyl substituent plays an important role in controlling the reactivity of the cytidyl nucleosides.


Assuntos
Citidina/química , Desoxicitidina/química , Gases/química , Nitrogênio/química , Oxigênio/química , Prótons , Hidrogênio/química , Análise dos Mínimos Quadrados , Modelos Químicos , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Infravermelho , Vibração
13.
J Phys Chem B ; 119(7): 2795-805, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25622282

RESUMO

The gas-phase conformations of protonated 2'-deoxyadenosine, [dAdo+H](+), and its RNA analogue protonated adenosine, [Ado+H](+), generated upon electrospray ionization are examined using infrared multiple photon dissociation (IRMPD) action spectroscopy techniques and supported by complementary theoretical electronic structure calculations. IRMPD action spectra are measured over the IR fingerprint region using the FELIX free-electron laser and the hydrogen-stretching region using an optical parametric oscillator/amplifier laser system. The measured IRMPD spectra are compared to linear IR spectra predicted for the stable low-energy conformations of [dAdo+H](+) and [Ado+H](+) computed at the B3LYP/6-311+G(d,p) level of theory to determine the preferred site of protonation and to identify the structures populated in the experiments. N3 is found to be the most favorable site of protonation for both [dAdo+H](+) and [Ado+H](+), whereas conformers protonated at the N1 and N7 positions are much less stable by >25 kJ/mol. The 2'-hydroxyl substituent of Ado does not lead to a significant change in the structure of the ground-state conformer of [Ado+H](+) as compared to that of [dAdo+H](+), except that it provides additional stabilization via the formation of an O2'H···O3' hydrogen bond. Therefore, [dAdo+H](+) and [Ado+H](+) exhibit highly parallel IRMPD spectral features in both the fingerprint and hydrogen-stretching regions. However, the additional 2'-hydroxyl substituent markedly affects the IRMPD yield of the measured IR bands. The spectral signatures in the hydrogen-stretching region provide complementary information to that of the fingerprint region and enable facile differentiation of the conformers that arise from different protonation sites. In spite of the relative gas-phase stabilities of the N3 and N1 protonated conformers, present results suggest that both are accessed in the experiments and contribute to the measured IRMPD spectrum, indicating that the relative stabilities in solution also influence the populations generated by electrospray ionization.


Assuntos
Adenosina/química , Desoxiadenosinas/química , Gases/química , Prótons , Ligação de Hidrogênio , Modelos Químicos , Conformação Molecular , Espectrofotometria Infravermelho/métodos , Termodinâmica , Vibração
14.
J Phys Chem B ; 118(51): 14774-84, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25423364

RESUMO

The gas-phase structures of protonated 2'-deoxyguanosine, [dGuo+H](+), and its RNA analogue protonated guanosine, [Guo+H](+), are investigated by infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical electronic structure calculations. IRMPD action spectra are measured over the range extending from ∼550 to 1900 cm(-1) using the FELIX free electron laser and from ∼2800 to 3800 cm(-1) using an optical parametric oscillator/amplifier (OPO/OPA) laser system. The measured IRMPD spectra of [dGuo+H](+) and [Guo+H](+) are compared to each other and to B3LYP/6-311+G(d,p) linear IR spectra predicted for the stable low-energy conformations computed for these species to determine the most favorable site of protonation, identify the structures accessed in the experiments, and elucidate the influence of the 2'-hydroxyl substituent on the structures and the IRMPD spectral features. Theoretical energetics and the measured IRMPD spectra find that N7 protonation is preferred for both [dGuo+H](+) and [Guo+H](+), whereas O6 and N3 protonated conformers are found to be much less stable. The 2'-hydroxyl substituent does not exert a significant influence on the structures and relative stabilities of the stable low-energy conformations of [dGuo+H](+) versus [Guo+H](+) but does provide additional opportunities for hydrogen bonding such that more low-energy structures are found for [Guo+H](+). [dGuo+H](+) and [Guo+H](+) share very parallel IRMPD spectral features in the FELIX and OPO regions, whereas the effect of the 2'-hydroxyl substituent is primarily seen in the relative intensities of the measured IR bands. The measured OPO/OPA spectral signatures, primarily reflecting the IR features associated with the O-H and N-H stretches, provide complementary information to that of the FELIX region and enable the conformers that arise from different protonation sites to be more readily distinguished. Insight gained from this and parallel studies of other DNA and RNA nucleosides and nucleotides should help better elucidate the effects of the local environment on the overall structures of DNA and RNA.


Assuntos
Desoxiguanosina/química , Guanosina/química , Modelos Teóricos , Espectrofotometria Infravermelho/métodos , Ligação de Hidrogênio , Espectrometria de Massas , Prótons
15.
J Phys Chem B ; 117(46): 14191-201, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24151932

RESUMO

The gas-phase structures of proton-bound dimers of cytosine and modified cytosines and their d6-analogues generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical electronic structure calculations. The modified cytosines examined include the 5-methyl-, 5-fluoro-, and 5-bromo-substituted species. IRMPD action spectra of seven proton-bound dimers exhibit both similar and distinctive spectral features over the range of ∼2600-3700 cm(-1). The IRMPD spectra of all of these proton-bound dimers are relatively simple, but exhibit obvious shifts in the positions of several bands that correlate with the properties of the substituent. The measured IRMPD spectra are compared to linear IR spectra calculated for the stable low-energy tautomeric conformations, determined at the B3LYP/6-31G* level of theory, to identify the conformations accessed in the experiments. Comparison of the measured IRMPD and calculated IR spectra indicates that only a single conformation, the ground-state structure, is accessed for all proton-bound homodimers, whereas the ground-state and a small population of the first-excited tautomeric conformations are accessed for all proton-bound heterodimers. In all cases, three hydrogen-bonding interactions in which the nucleobases are aligned in an antiparallel fashion analogous to that of the DNA i-motif are responsible for stabilizing the base pairing. Thus, base modifications such as 5-methyl- and 5-halo-substitution of cytosine should not alter the structure of the DNA i-motif.


Assuntos
Citosina/análogos & derivados , Pareamento de Bases , Dimerização , Gases/química , Ligação de Hidrogênio , Conformação de Ácido Nucleico , Fótons , Prótons , Espectrofotometria Infravermelho
16.
J Phys Chem A ; 117(41): 10634-49, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24053133

RESUMO

The IRMPD action spectra of the deprotonated forms of the four common RNA mononucleotides, adenosine-5'-monophosphate (A5'p), guanosine-5'-monophosphate (G5'p), cytidine-5'-monophosphate (C5'p), and uridine-5'-monophosphate (U5'p), are measured to probe their gas-phase structures. The IRMPD action spectra of all four deprotonated RNA mononucleotides exhibit distinct IR signatures in the frequency region investigated, 570-1900 cm(-1), that allows these deprotonated mononucleotides to be easily differentiated from one other. Comparison of the measured IRMPD action spectra to the linear IR spectra calculated at the B3LYP/6-31+G(d,p) level of theory finds that the most stable conformations of the deprotonated forms of A5'p, C5'p, and U5'p are accessed in the experiments, and these conformers adopt the C3' endo conformation of the ribose moiety and the anti conformation of the nucleobase. In the case of deprotonated G5'p, the most stable conformer is also accessed in the experiments. However, the ground-state conformer differs from the other three deprotonated RNA mononucleotides in that it adopts the syn rather than anti conformation for the nucleobase. Present results are compared to results previously obtained for the deprotonated forms of the four common DNA mononucleotides to examine the fundamental conformational differences between these species, and thus elucidate the effects of the 2'-hydroxyl group on their structure, stability, and fragmentation behavior.


Assuntos
Gases , Raios Infravermelhos , Nucleotídeos/química , Fótons , Prótons , RNA/química , Análise Espectral , Simulação por Computador , Gases/química , Gases/metabolismo , Conformação Molecular , Transição de Fase
17.
J Am Soc Mass Spectrom ; 24(10): 1523-33, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23893433

RESUMO

The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both similar and distinctive spectral features over the range of ~1000-1900 cm(-1). The IRMPD spectra of the Li(+)(cytosine), Na(+)(cytosine), and K(+)(cytosine) complexes are relatively simple but exhibit changes in the shape and shifts in the positions of several bands that correlate with the size of the alkali metal cation. The IRMPD spectra of the Rb(+)(cytosine) and Cs(+)(cytosine) complexes are much richer as distinctive new IR bands are observed, and the positions of several bands continue to shift in relation to the size of the metal cation. The measured IRMPD spectra are compared to linear IR spectra of stable low-energy tautomeric conformations calculated at the B3LYP/def2-TZVPPD level of theory to identify the conformations accessed in the experiments. These comparisons suggest that the evolution in the features in the IRMPD action spectra with the size of the metal cation, and the appearance of new bands for the larger metal cations, are the result of the variations in the intensities at which these complexes can be generated and the strength of the alkali metal cation-cytosine binding interaction, not the presence of multiple tautomeric conformations. Only a single tautomeric conformation is accessed for all five alkali metal cation-cytosine complexes, where the alkali metal cation binds to the O2 and N3 atoms of the canonical amino-oxo tautomer of cytosine, M(+)(C1).


Assuntos
Citosina/química , Espectrometria de Massas/métodos , Metais Alcalinos/química , Cátions/química , Gases/química , Tamanho da Partícula , Estereoisomerismo , Termodinâmica
18.
J Phys Chem A ; 117(20): 4115-26, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23586839

RESUMO

The activation of methane by gas-phase transition metal cations (M(+)) has been studied extensively, both experimentally and using density functional theory (DFT). Methane is exothermically dehydrogenated by several 5d metal ions to form [M,C,2H](+) and H2. However, the structure of the dehydrogenation product has not been established unambiguously. Two types of structures have been considered: a carbene structure where an intact CH2 fragment is bound to the metal (M(+)-CH2) and a carbyne (hydrido-methylidyne) structure with both a CH and a hydrogen bound to the metal separately (H-M(+)-CH). For metal ions with empty d-orbitals, an agostic interaction can occur that could influence the competition between carbene and carbyne structures. In this work, the gas phase [M,C,2H](+) (M = Ta, W, Ir, Pt) products are investigated by infrared multiple-photon dissociation (IR-MPD) spectroscopy using the Free-Electron Laser for IntraCavity Experiments (FELICE). Metal cations are formed in a laser ablation source and react with methane pulsed into a reaction channel downstream. IR-MPD spectra of the [M,C,2H](+) species are measured in the 300-3500 cm(-1) spectral range by monitoring the loss of H (2H in the case of [Ir,C,2H](+)). For each system, the experimental spectrum closely resembles the calculated spectrum of the lowest energy structure calculated using DFT: for Pt, a classic C(2v) carbene structure; for Ta and W, carbene structures that are distorted by agostic interactions; and a carbyne structure for the Ir complex. The Ir carbyne structure was not considered previously. To obtain this agreement, the calculated harmonic frequencies are scaled with a scaling factor of 0.939, which is fairly low and can be attributed to the strong redshift induced by the IR multiple-photon excitation process of these small molecules. These four-atomic species are among the smallest systems studied by IR-FEL based IR-MPD spectroscopy, and their spectra demonstrate the power of IR spectroscopy in resolving long-standing chemical questions.


Assuntos
Metano/química , Elementos de Transição/química , Cátions/química , Hidrogenação , Estrutura Molecular , Teoria Quântica
19.
J Phys Chem A ; 117(6): 1319-35, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23289585

RESUMO

The gas phase structures of the deprotonated 2'-deoxymononucleotides including 2'-deoxyadenosine-5'-monophosphate (dA5'p), 2'-deoxycytidine-5'-monophosphate (dC5'p), 2'-deoxyguanosine-5'-monophosphate (dG5'p), and thymidine-5'-monophosphate (T5'p) are examined via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical electronic structure calculations. The measured IRMPD action spectra of all four deprotonated DNA mononucleotides exhibit unique spectral features in the region extending from ~600 to 1800 cm(-1) such that they can be readily differentiated from one another. The measured IRMPD action spectra are compared to the linear IR spectra calculated at the B3LYP/6-311+G(d,p) level of theory to determine the conformations of these species accessed in the experiments. On the basis of these comparisons and the computed energetic information, the most stable conformations of the deprotonated forms of dA5'p, dC5'p, and T5'p are conformers where the ribose moiety adopts a C3' endo conformation and the nucleobase is in an anti conformation. By contrast, the most stable conformations of the deprotonated form of dG5'p are conformers where the ribose adapts a C3' endo conformation and the nucleobase is in a syn conformation. In addition to the ground-state conformers, several stable low-energy excited conformers that differ slightly in the orientation of the phosphate ester moiety were also accessed in the experiments.


Assuntos
DNA/química , Nucleotídeos/química , Fótons , Teoria Quântica , Gases/química , Conformação de Ácido Nucleico , Espectrofotometria Infravermelho
20.
J Am Soc Mass Spectrom ; 23(9): 1469-78, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22821195

RESUMO

Tautomerization induced by protonation of halouracils may increase their efficacy as anti-cancer drugs by altering their reactivity and hydrogen bonding characteristics, potentially inducing errors during DNA and RNA replication. The gas-phase structures of protonated complexes of five halouracils, including 5-fluorouracil, 5-chlorouracil, 5-bromouracil, 5-iodouracil, and 6-chlorouracil are examined via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical electronic structure calculations. IRMPD action spectra were measured for each complex in the IR fingerprint region extending from ~1000 to 1900 cm(-1) using the free electron laser (FELIX). Correlations are made between the measured IRMPD action spectra and the linear IR spectra for the stable low-energy tautomeric conformations computed at the B3LYP/6-311+G(2d,2p)//B3LYP/6-31G* level of theory. Absence of an intense band(s) in the IRMPD spectrum arising from the carbonyl stretch(es) that are expected to appear near 1825 cm(-1) provides evidence that protonation induces tautomerization and preferentially stabilizes alternative, noncanonical tautomers of these halouracils where both keto functionalities are converted to hydroxyl groups upon binding of a proton. The weak, but measurable absorption, which does occur for these systems near 1835 cm(-1) suggests that in addition to the ground-state conformer, very minor populations of excited, low-energy conformers that contain keto functionalities are also present in these experiments.


Assuntos
Espectrometria de Massas/métodos , Prótons , Espectrofotometria Infravermelho/métodos , Uracila/análogos & derivados , Hidrocarbonetos Halogenados/química , Isomerismo , Processos Fotoquímicos , Termodinâmica , Uracila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA