Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 92(6): 1939-1952, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29761207

RESUMO

Bosentan is well known to induce cholestatic liver toxicity in humans. The present study was set up to characterize the hepatotoxic effects of this drug at the transcriptomic, proteomic, and metabolomic levels. For this purpose, human hepatoma-derived HepaRG cells were exposed to a number of concentrations of bosentan during different periods of time. Bosentan was found to functionally and transcriptionally suppress the bile salt export pump as well as to alter bile acid levels. Pathway analysis of both transcriptomics and proteomics data identified cholestasis as a major toxicological event. Transcriptomics results further showed several gene changes related to the activation of the nuclear farnesoid X receptor. Induction of oxidative stress and inflammation were also observed. Metabolomics analysis indicated changes in the abundance of specific endogenous metabolites related to mitochondrial impairment. The outcome of this study may assist in the further optimization of adverse outcome pathway constructs that mechanistically describe the processes involved in cholestatic liver injury.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Bosentana/toxicidade , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Ácidos e Sais Biliares/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Humanos , Fígado/metabolismo , Metabolômica , Estresse Oxidativo/genética , Proteômica , Receptores Citoplasmáticos e Nucleares/genética
2.
Shock ; 50(2): 187-198, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29076974

RESUMO

BACKGROUND AND AIMS: Elevated markers of cholestasis are common in response to critical illness, and associated with adverse outcome. The role of illness duration and of nutrient restriction on underlying molecular pathways of such cholestatic responses have not been thoroughly investigated. METHODS: In a mouse model of surgery- and sepsis-induced critical illness, molecular pathways of cholestasis were investigated up to 7 days. To assess which changes are explained by illness-induced lack of feeding, nutrient-restricted healthy mice were studied and compared with ad libitum fed healthy mice. Furthermore, serum bile acid (BA) concentrations were quantified in 1,114 human patients with either short or long intensive care unit (ICU) stay, matched for type and severity of illness, up to ICU-day-7. RESULTS: In critically ill mice, either evoked by surgery or sepsis, circulating and hepatic BA-levels progressively increased with time from day-3 onward, preceded by unsuppressed or upregulated CYP7A1 and CYP27A1 protein expression. From 30 h onward, nuclear farnesoid-X-receptor-retinoid-X-receptor staining was significantly suppressed in both critically ill groups, followed from day-3 onward by decreased gene expression of the apical exporter BA-specific export pump and increased expression of basolateral exporters multidrug resistance-associated protein 3 (MRP3) and MRP4. Nutrient restriction in healthy mice only partly mirrored illness-induced alterations in circulating BA and BA-transporters, without changing nuclear receptors or synthesis markers expression. Also in human critically ill patients, serum BA increased with time in long-stay patients only, similarly for patients with or without sepsis. CONCLUSIONS: Circulating BA concentrations rose days after onset of sepsis- and surgery-induced, critical illness, only partially explained by lack of feeding, preceded by suppressed nuclear feedback-sensors and ongoing BA synthesis. Expression of transporters suggested ongoing reversed BA-flow toward the blood.


Assuntos
Restrição Calórica , Colestase/metabolismo , Sepse/metabolismo , Proteínas Angiogênicas/metabolismo , Animais , Ácidos e Sais Biliares/sangue , Colestanotriol 26-Mono-Oxigenase/biossíntese , Colestase/patologia , Colesterol 7-alfa-Hidroxilase/biossíntese , Modelos Animais de Doenças , Feminino , Regulação Enzimológica da Expressão Gênica , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Sepse/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA