Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38879844

RESUMO

PURPOSE: MRI-derived brain volume loss (BVL) is widely used as neurodegeneration marker. SIENA is state-of-the-art for BVL measurement, but limited by long computation time. Here we propose "BrainLossNet", a convolutional neural network (CNN)-based method for BVL-estimation. METHODS: BrainLossNet uses CNN-based non-linear registration of baseline(BL)/follow-up(FU) 3D-T1w-MRI pairs. BVL is computed by non-linear registration of brain parenchyma masks segmented in the BL/FU scans. The BVL estimate is corrected for image distortions using the apparent volume change of the total intracranial volume. BrainLossNet was trained on 1525 BL/FU pairs from 83 scanners. Agreement between BrainLossNet and SIENA was assessed in 225 BL/FU pairs from 94 MS patients acquired with a single scanner and 268 BL/FU pairs from 52 scanners acquired for various indications. Robustness to short-term variability of 3D-T1w-MRI was compared in 354 BL/FU pairs from a single healthy men acquired in the same session without repositioning with 116 scanners (Frequently-Traveling-Human-Phantom dataset, FTHP). RESULTS: Processing time of BrainLossNet was 2-3 min. The median [interquartile range] of the SIENA-BrainLossNet BVL difference was 0.10% [- 0.18%, 0.35%] in the MS dataset, 0.08% [- 0.14%, 0.28%] in the various indications dataset. The distribution of apparent BVL in the FTHP dataset was narrower with BrainLossNet (p = 0.036; 95th percentile: 0.20% vs 0.32%). CONCLUSION: BrainLossNet on average provides the same BVL estimates as SIENA, but it is significantly more robust, probably due to its built-in distortion correction. Processing time of 2-3 min makes BrainLossNet suitable for clinical routine. This can pave the way for widespread clinical use of BVL estimation from intra-scanner BL/FU pairs.

2.
Sci Rep ; 13(1): 10120, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344565

RESUMO

Lung cancer is a serious disease responsible for millions of deaths every year. Early stages of lung cancer can be manifested in pulmonary lung nodules. To assist radiologists in reducing the number of overseen nodules and to increase the detection accuracy in general, automatic detection algorithms have been proposed. Particularly, deep learning methods are promising. However, obtaining clinically relevant results remains challenging. While a variety of approaches have been proposed for general purpose object detection, these are typically evaluated on benchmark data sets. Achieving competitive performance for specific real-world problems like lung nodule detection typically requires careful analysis of the problem at hand and the selection and tuning of suitable deep learning models. We present a systematic comparison of state-of-the-art object detection algorithms for the task of lung nodule detection. In this regard, we address the critical aspect of class imbalance and and demonstrate a data augmentation approach as well as transfer learning to boost performance. We illustrate how this analysis and a combination of multiple architectures results in state-of-the-art performance for lung nodule detection, which is demonstrated by the proposed model winning the detection track of the Node21 competition. The code for our approach is available at https://github.com/FinnBehrendt/node21-submit.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Nódulo Pulmonar Solitário , Humanos , Tomografia Computadorizada por Raios X/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Pulmão , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulo Pulmonar Solitário/diagnóstico por imagem
3.
Int J Comput Assist Radiol Surg ; 16(9): 1413-1423, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34251654

RESUMO

PURPOSE: Brain Magnetic Resonance Images (MRIs) are essential for the diagnosis of neurological diseases. Recently, deep learning methods for unsupervised anomaly detection (UAD) have been proposed for the analysis of brain MRI. These methods rely on healthy brain MRIs and eliminate the requirement of pixel-wise annotated data compared to supervised deep learning. While a wide range of methods for UAD have been proposed, these methods are mostly 2D and only learn from MRI slices, disregarding that brain lesions are inherently 3D and the spatial context of MRI volumes remains unexploited. METHODS: We investigate whether using increased spatial context by using MRI volumes combined with spatial erasing leads to improved unsupervised anomaly segmentation performance compared to learning from slices. We evaluate and compare 2D variational autoencoder (VAE) to their 3D counterpart, propose 3D input erasing, and systemically study the impact of the data set size on the performance. RESULTS: Using two publicly available segmentation data sets for evaluation, 3D VAEs outperform their 2D counterpart, highlighting the advantage of volumetric context. Also, our 3D erasing methods allow for further performance improvements. Our best performing 3D VAE with input erasing leads to an average DICE score of 31.40% compared to 25.76% for the 2D VAE. CONCLUSIONS: We propose 3D deep learning methods for UAD in brain MRI combined with 3D erasing and demonstrate that 3D methods clearly outperform their 2D counterpart for anomaly segmentation. Also, our spatial erasing method allows for further performance improvements and reduces the requirement for large data sets.


Assuntos
Aprendizado Profundo , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Neuroimagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA