Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(35): eaba5573, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923626

RESUMO

Antibody-mediated immune checkpoint blockade is a transformative immunotherapy for cancer. These same mechanisms can be repurposed for the control of destructive alloreactive immune responses in the transplantation setting. Here, we implement a synthetic biomaterial platform for the local delivery of a chimeric streptavidin/programmed cell death-1 (SA-PD-L1) protein to direct "reprogramming" of local immune responses to transplanted pancreatic islets. Controlled presentation of SA-PD-L1 on the surface of poly(ethylene glycol) microgels improves local retention of the immunomodulatory agent over 3 weeks in vivo. Furthermore, local induction of allograft acceptance is achieved in a murine model of diabetes only when receiving the SA-PD-L1-presenting biomaterial in combination with a brief rapamycin treatment. Immune characterization revealed an increase in T regulatory and anergic cells after SA-PD-L1-microgel delivery, which was distinct from naïve and biomaterial alone microenvironments. Engineering the local microenvironment via biomaterial delivery of checkpoint proteins has the potential to advance cell-based therapies, avoiding the need for systemic chronic immunosuppression.


Assuntos
Antígeno B7-H1 , Transplante das Ilhotas Pancreáticas , Animais , Antígeno B7-H1/metabolismo , Materiais Biocompatíveis/farmacologia , Sobrevivência de Enxerto , Fatores Imunológicos , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1 , Estreptavidina
2.
Artigo em Inglês | MEDLINE | ID: mdl-32775032

RESUMO

Background: The centromedian (CM) region of the thalamus is a common target for deep brain stimulation (DBS) treatment for Tourette Syndrome (TS). However, there are currently no standard microelectrode recording or macrostimulation methods to differentiate CM thalamus from other nearby structures and nuclei. Case Report: Here we present a case of failed conventional stereotactic targeting in TS DBS. Postoperative local field potential recordings (LFPs) showed features including beta power desynchronization during voluntary movement and thalamo-cortical phase amplitude coupling at rest. These findings suggested that the DBS lead was suboptimally placed in the ventral intermediate (VIM) nucleus of the thalamus rather than the intended CM region. Due to a lack of clinical improvement in tic severity scales three months following the initial surgery, the patient underwent lead revision surgery. Slight repositioning of the DBS leads resulted in a remarkably different clinical outcome. Afterwards, LFPs revealed less beta desynchronization and disappearance of the thalamo-cortical phase amplitude coupling. Follow-up clinical visits documented improvement of the patient's global tic scores. Discussion: This case provides preliminary evidence that combining physiology with atlas based targeting may possibly enhance outcomes in some cases of Tourette DBS. A larger prospective study will be required to confirm these findings. Highlight: This report demonstrates a case of failed centromedian nucleus region deep brain stimulation (DBS). We observed suboptimal tic improvement several months following DBS surgery and subsequent lead revision improved the outcome. The neurophysiology provided an important clue suggesting the possibility of suboptimally placed DBS leads. Repeat LFPs during lead revision revealed less beta desynchronization and disappearance of the thalamo-cortical phase amplitude coupling. There was improvement in tic outcome following slight repositioning during bilateral DBS lead revision. This case provides preliminary evidence supporting the use of physiology to augment the atlas based targeting of Tourette DBS cases.


Assuntos
Estimulação Encefálica Profunda , Núcleos Intralaminares do Tálamo , Síndrome de Tourette/terapia , Adulto , Atlas como Assunto , Mapeamento Encefálico , Estimulação Encefálica Profunda/normas , Humanos , Núcleos Intralaminares do Tálamo/cirurgia , Masculino , Reoperação
3.
J Neurosci ; 39(41): 8124-8134, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31471470

RESUMO

The amplitude of high broadband activity in human cortical field potentials indicates local processing and has repeatedly been shown to reflect motor control in the primary motor cortex. In a group of male and female subjects affected by essential tremor and undergoing deep brain stimulation surgery, ventral intermediate nucleus low-frequency oscillations (<30 Hz) entrain the corticomotor high broadband activity (>40 Hz) during rest, relinquishing that role during movement execution. This finding suggests that there is significant cross-rhythm communication between thalamocortical regions, and motor behavior corresponds to changes in thalamocortical phase-amplitude coupling profiles. Herein, we demonstrate that thalamocortical coupling is a crucial mechanism for gating motor behavior.SIGNIFICANCE STATEMENT We demonstrate, for the first time, how thalamocortical coupling is mediating movement execution in humans. We show how the low-frequency oscillation from the ventral intermediate nucleus, known as the motor nucleus of the thalamus, entrains the excitability of the primary motor cortex, as reflected by the phase-amplitude coupling between the two regions. We show that thalamocortical phase-amplitude coupling is a manifestation of a gating mechanism for movement execution mediated by the thalamus. These findings highlight the importance of incorporating cross-frequency relationship in models of motor behavior; and given the spatial specificity of this mechanism, this work could be used to improve functional targeting during surgical implantations in subcortical regions.


Assuntos
Córtex Motor/fisiopatologia , Vias Neurais/fisiopatologia , Tálamo/fisiopatologia , Idoso , Estudos de Coortes , Sinais (Psicologia) , Estimulação Encefálica Profunda , Eletrodos Implantados , Eletromiografia , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/fisiopatologia , Tremor Essencial/cirurgia , Potenciais Evocados , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Movimento , Vias Neurais/diagnóstico por imagem , Tálamo/diagnóstico por imagem
4.
J Neurosurg ; 129(2): 308-314, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28960154

RESUMO

Deep brain stimulation (DBS) has emerged as a promising intervention for the treatment of select movement and neuropsychiatric disorders. Current DBS therapies deliver electrical stimulation continuously and are not designed to adapt to a patient's symptoms. Continuous DBS can lead to rapid battery depletion, which necessitates frequent surgery for battery replacement. Next-generation neurostimulation devices can monitor neural signals from implanted DBS leads, where stimulation can be delivered responsively, moving the field of neuromodulation away from continuous paradigms. To this end, the authors designed and chronically implemented a responsive stimulation paradigm in a patient with medically refractory Tourette syndrome. The patient underwent implantation of a responsive neurostimulator, which is capable of responsive DBS, with bilateral leads in the centromedian-parafascicular (Cm-Pf) region of the thalamus. A spectral feature in the 5- to 15-Hz band was identified as the control signal. Clinical data collected prior to and after 12 months of responsive therapy revealed improvements from baseline scores in both Modified Rush Tic Rating Scale and Yale Global Tic Severity Scale scores (64% and 48% improvement, respectively). The effectiveness of responsive stimulation (p = 0.16) was statistically identical to that of scheduled duty cycle stimulation (p = 0.33; 2-sided Wilcoxon unpaired rank-sum t-test). Overall, responsive stimulation resulted in a 63.3% improvement in the neurostimulator's projected mean battery life. Herein, to their knowledge, the authors present the first proof of concept for responsive stimulation in a patient with Tourette syndrome.


Assuntos
Estimulação Encefálica Profunda , Síndrome de Tourette/terapia , Adulto , Estimulação Encefálica Profunda/métodos , Humanos , Masculino , Estudo de Prova de Conceito
5.
J Neurol Neurosurg Psychiatry ; 88(11): 968-970, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28822983

RESUMO

BACKGROUND: A significant subset of patients with Parkinson's disease (PD) suffer from impulse control disorders (ICDs). A hallmark feature of many ICDs is the pursuit of rewarding behaviours despite negative consequences. Recent evidence implicates the subthalamic nucleus (STN) and globus pallidus internus (GPi) in reward and punishment processing, and deep brain stimulation (DBS) of these structures has been associated with changes in ICD symptoms. METHODS: We tested the hypothesis that in patients with PD diagnosed with ICD, neurons in the STN and GPi would be more responsive to reward-related stimuli and less responsive to loss-related stimuli. We studied a cohort of 43 patients with PD (12 with an ICD and 31 without) undergoing DBS electrode placement surgery. Patients performed a behavioural task in which their action choices were motivated by the potential for either a monetary reward or a monetary loss. During task performance, the activity of individual neurons was recorded in either the STN (n=100) or the GPi (n=100). RESULTS: The presence of an ICD was associated with significantly greater proportions of reward responsive neurons (p<0.01) and significantly lower proportions of loss responsive neurons (p<0.05) in the STN, but not in the GPi. CONCLUSIONS: These findings provide further evidence of STN involvement in impulsive behaviour in the PD population.


Assuntos
Transtornos Disruptivos, de Controle do Impulso e da Conduta/fisiopatologia , Globo Pálido/fisiopatologia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Idoso , Comportamento de Escolha/fisiologia , Estudos de Coortes , Transtornos Disruptivos, de Controle do Impulso e da Conduta/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Motivação/fisiologia , Neurônios/fisiologia , Doença de Parkinson/psicologia , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA