Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
iScience ; 25(11): 105314, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36246574

RESUMO

One of the bottlenecks in the application of basic research findings to patients is the enormous cost, time, and effort required for high-throughput screening of potential drugs for given therapeutic targets. Here we have developed LIGHTHOUSE, a graph-based deep learning approach for discovery of the hidden principles underlying the association of small-molecule compounds with target proteins. Without any 3D structural information for proteins or chemicals, LIGHTHOUSE estimates protein-compound scores that incorporate known evolutionary relations and available experimental data. It identified therapeutics for cancer, lifestyle related disease, and bacterial infection. Moreover, LIGHTHOUSE predicted ethoxzolamide as a therapeutic for coronavirus disease 2019 (COVID-19), and this agent was indeed effective against alpha, beta, gamma, and delta variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that are rampant worldwide. We envision that LIGHTHOUSE will help accelerate drug discovery and fill the gap between bench side and bedside.

2.
J Med Chem ; 65(20): 13852-13865, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36229406

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has necessitated the development of antiviral agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 3C-like protease (3CLpro) is a promising target for COVID-19 treatment. Here, we report a new class of covalent inhibitors of 3CLpro that possess chlorofluoroacetamide (CFA) as a cysteine-reactive warhead. Based on an aza-peptide scaffold, we synthesized a series of CFA derivatives in enantiopure form and evaluated their biochemical efficiency. The data revealed that 8a (YH-6) with the R configuration at the CFA unit strongly blocks SARS-CoV-2 replication in infected cells, and its potency is comparable to that of nirmatrelvir. X-ray structural analysis showed that YH-6 formed a covalent bond with Cys145 at the catalytic center of 3CLpro. The strong antiviral activity and favorable pharmacokinetic properties of YH-6 suggest its potential as a lead compound for the treatment of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Proteases 3C de Coronavírus , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Inibidores de Proteases/química , Cisteína , Cisteína Endopeptidases/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Peptídeos/química
3.
Cell ; 185(12): 2103-2115.e19, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35568035

RESUMO

Soon after the emergence and global spread of the SARS-CoV-2 Omicron lineage BA.1, another Omicron lineage, BA.2, began outcompeting BA.1. The results of statistical analysis showed that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralization experiments revealed that immunity induced by COVID vaccines widely administered to human populations is not effective against BA.2, similar to BA.1, and that the antigenicity of BA.2 is notably different from that of BA.1. Cell culture experiments showed that the BA.2 spike confers higher replication efficacy in human nasal epithelial cells and is more efficient in mediating syncytia formation than the BA.1 spike. Furthermore, infection experiments using hamsters indicated that the BA.2 spike-bearing virus is more pathogenic than the BA.1 spike-bearing virus. Altogether, the results of our multiscale investigations suggest that the risk of BA.2 to global health is potentially higher than that of BA.1.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , COVID-19/virologia , Cricetinae , Células Epiteliais , Humanos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética
4.
Biochem Biophys Res Commun ; 577: 146-151, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34517212

RESUMO

The human lung cell A549 is susceptible to infection with a number of respiratory viruses. However, A549 cells are resistant to Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infection in conventional submerged culture, and this would appear to be due to low expression levels of the SARS-CoV-2 entry receptor: angiotensin-converting enzyme-2 (ACE2). Here, we examined SARS-CoV-2 susceptibility to A549 cells after adaptation to air-liquid interface (ALI) culture. A549 cells in ALI culture yielded a layer of mucus on their apical surface, exhibited decreased expression levels of the proliferation marker KI-67 and intriguingly became susceptible to SARS-CoV-2 infection. We found that A549 cells increased the endogenous expression levels of ACE2 and TMPRSS2 following adaptation to ALI culture conditions. Camostat, a TMPRSS2 inhibitor, reduced SARS-CoV-2 infection in ALI-cultured A549 cells. These findings indicate that ALI culture switches the phenotype of A549 cells from resistance to susceptibility to SARS-CoV-2 infection through upregulation of ACE2 and TMPRSS2.


Assuntos
Células Epiteliais Alveolares/virologia , COVID-19/virologia , Técnicas de Cultura de Células/métodos , SARS-CoV-2/fisiologia , Células A549 , Células Epiteliais Alveolares/patologia , Células Cultivadas , Suscetibilidade a Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Regulação para Cima/genética
5.
Nat Immunol ; 22(7): 820-828, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33976430

RESUMO

Efficient immune responses against viral infection are determined by sufficient activation of nucleic acid sensor-mediated innate immunity1,2. Coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains an ongoing global pandemic. It is an urgent challenge to clarify the innate recognition mechanism to control this virus. Here we show that retinoic acid-inducible gene-I (RIG-I) sufficiently restrains SARS-CoV-2 replication in human lung cells in a type I/III interferon (IFN)-independent manner. RIG-I recognizes the 3' untranslated region of the SARS-CoV-2 RNA genome via the helicase domains, but not the C-terminal domain. This new mode of RIG-I recognition does not stimulate its ATPase, thereby aborting the activation of the conventional mitochondrial antiviral-signaling protein-dependent pathways, which is in accordance with lack of cytokine induction. Nevertheless, the interaction of RIG-I with the viral genome directly abrogates viral RNA-dependent RNA polymerase mediation of the first step of replication. Consistently, genetic ablation of RIG-I allows lung cells to produce viral particles that expressed the viral spike protein. By contrast, the anti-SARS-CoV-2 activity was restored by all-trans retinoic acid treatment through upregulation of RIG-I protein expression in primary lung cells derived from patients with chronic obstructive pulmonary disease. Thus, our findings demonstrate the distinctive role of RIG-I as a restraining factor in the early phase of SARS-CoV-2 infection in human lung cells.


Assuntos
COVID-19/imunologia , Proteína DEAD-box 58/imunologia , Pulmão/imunologia , Receptores Imunológicos/imunologia , SARS-CoV-2/imunologia , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Cães , Células HEK293 , Humanos , Interferon Tipo I/imunologia , Interferons/imunologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Doença Pulmonar Obstrutiva Crônica/imunologia , RNA Polimerase Dependente de RNA/imunologia , Células Sf9 , Transdução de Sinais/imunologia , Células Vero , Proteínas Virais/imunologia , Interferon lambda
6.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33416463

RESUMO

The genus Flavivirus includes a range of mosquito-specific viruses in addition to well-known medically important arboviruses. Isolation and comprehensive genomic analyses of viruses in mosquitoes collected in Bolivia resulted in the identification of three novel flavivirus species. Psorophora flavivirus (PSFV) was isolated from Psorophora albigenu. The coding sequence of the PSFV polyprotein shares 60 % identity with that of the Aedes-associated lineage II insect-specific flavivirus (ISF), Marisma virus. Isolated PSFV replicates in both Aedes albopictus- and Aedes aegypti-derived cells, but not in mammalian Vero or BHK-21 cell lines. Two other flaviviruses, Ochlerotatus scapularis flavivirus (OSFV) and Mansonia flavivirus (MAFV), which were identified from Ochlerotatus scapularis and Mansonia titillans, respectively, group with the classical lineage I ISFs. The protein coding sequences of these viruses share only 60 and 40 % identity with the most closely related of known lineage I ISFs, including Xishuangbanna aedes flavivirus and Sabethes flavivirus, respectively. Phylogenetic analysis suggests that MAFV is clearly distinct from the groups of the current known Culicinae-associated lineage I ISFs. Interestingly, the predicted amino acid sequence of the MAFV capsid protein is approximately two times longer than that of any of the other known flaviviruses. Our results indicate that flaviviruses with distinct features can be found at the edge of the Bolivian Amazon basin at sites that are also home to dense populations of human-biting mosquitoes.


Assuntos
Culicidae/virologia , Flavivirus/genética , Flavivirus/isolamento & purificação , Aedes/virologia , Animais , Bolívia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Linhagem Celular , Flavivirus/classificação , Flavivirus/fisiologia , Genoma Viral , Mosquitos Vetores/virologia , Filogenia , Poliproteínas/química , Poliproteínas/genética , RNA Viral/genética , Análise de Sequência de RNA , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética , Replicação Viral , Sequenciamento Completo do Genoma
7.
PLoS Pathog ; 16(1): e1008238, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971978

RESUMO

West Nile virus (WNV) belongs to the Flaviviridae family and has emerged as a significant cause of viral encephalitis in birds and animals including humans. WNV replication directly induces neuronal injury, followed by neuronal cell death. We previously showed that accumulation of ubiquitinated protein aggregates was involved in neuronal cell death in the WNV-infected mouse brain. In this study, we attempted to elucidate the mechanisms of the accumulation of protein aggregates in the WNV-infected cells. To identify the viral factor inducing the accumulation of ubiquitinated proteins, intracellular accumulation of ubiquitinated proteins was examined in the cells expressing the viral protein. Expression of capsid (C) protein induced the accumulation, while mutations at residues L51 and A52 in C protein abrogated the accumulation. Wild-type (WT) or mutant WNV in which mutations were introduced into the residues was inoculated into human neuroblastoma cells. The expression levels of LC3-II, an autophagy-related protein, and AMP-activated protein kinase (AMPK), an autophagy inducer, were reduced in the cells infected with WT WNV, while the reduction was not observed in the cells infected with WNV with the mutations in C protein. Similarly, ubiquitination and degradation of AMPK were only observed in the cells infected with WT WNV. In the cells expressing C protein, AMPK was co-precipitated with C protein and mutations in L51 and A52 reduced the interaction. Although the viral replication was not affected, the accumulation of ubiquitinated proteins in brain and neurological symptoms were attenuated in the mouse inoculated with WNV with the mutations in C protein as compared with that with WT WNV. Taken together, ubiquitination and degradation of AMPK by C protein resulted in the inhibition of autophagy and the accumulation of protein aggregates, which contributes to the development of neurological disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Proteínas do Capsídeo/fisiologia , Doenças do Sistema Nervoso/virologia , Vírus do Nilo Ocidental/fisiologia , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/patologia , Neurônios/metabolismo , Neurônios/virologia , Agregação Patológica de Proteínas , Proteólise , Ubiquitinação , Células Vero , Proteínas Virais/metabolismo
8.
Virus Genes ; 55(5): 630-642, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31292858

RESUMO

Japanese encephalitis virus (JEV) exerts a profound burden of viral encephalitis. We have investigated the differentially expressed transcripts in the neuronal transcriptome during JEV infection by RNA sequencing (RNA-Seq) of virus-infected SH-SY5Y human neuroblastoma cells. Gene ontology analysis revealed significant enrichment from two main pathways: endoplasmic reticulum (ER)-nucleus signaling (P value: 5.75E-18; false discovery rate [FDR] 3.11E-15) and the ER unfolded protein response (P value: 7.58E-18; FDR 3.11E-15). qPCR validation showed significant upregulation and differential expression (P < 0.01) of ER stress-signaling transcripts (SESN2, TRIB3, DDIT3, DDIT4, XBP1, and ATF4) at 24 h post-infection for both low (LN) and high (HN) neurovirulence JEV strains. Immunoblot analysis following JEV infection of SH-SY5Y cells showed an increase in levels of SESN2 protein following JEV infection. Similarly, Zika virus (MR766) infection of SH-SY5Y showed a titer-dependent increase in ER stress-signaling transcripts; however, this was absent or diminished for DDIT4 and ATF4, respectively, suggestive of differences in the induction of stress-response transcripts between flaviviruses. Interestingly, SLC7A11 and SLC3A2 mRNA were also both deregulated in JEV-infected SH-SY5Y cells and encode the two constituent subunits of the plasma membrane xCT amino acid antiporter that relieves oxidative stress by export of glutamate and import of cystine. Infection of SH-SY5Y and HEK293T cells by the JEV HN strain Sw/Mie/40/2004 lead to significant upregulation of the SLC7A11 mRNA to levels comparable to DDIT3. Our findings suggest upregulation of antioxidants including SESN2 and, also, the xCT antiporter occurs to counteract the oxidative stress elicited by JEV infection.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/crescimento & desenvolvimento , Neurônios/patologia , Neurônios/virologia , Proteínas Nucleares/biossíntese , Regulação para Cima , Sistema y+ de Transporte de Aminoácidos/biossíntese , Linhagem Celular , Biologia Computacional , Perfilação da Expressão Gênica , Humanos
9.
Pathol Int ; 68(12): 694-699, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30417961

RESUMO

A 24 year-old female presented with a mass lesion in the right temporal lobe. This case was difficult to diagnose using histological and immunological methods and therefore molecular analyses were applied to provide a definitive diagnosis. The tumor was well-demarcated, partially cystic, and irregularly-enhanced on gadolinium-enhanced T1-weighted magnetic resonance images. Pathologically, a large part of the tumor consisted of cells with fine cytoplasmic processes on a myxoid and mucinous background. Cells formed a microcystic structure around the mucinous tissue. Numerous eosinophilic granular bodies, but not Rosenthal fibers, were present. The solid and compact regions of the tumor were composed of fasciculation of dense fibrous glial tissues and occasional multinucleated giant cells. Tumor cells and their fragmented cytoplasmic processes were positively stained with GFAP, while eosinophilic granular bodies were both positive and negative. Xanthomatous changes were not detected and the reticulin fibers were restricted to vascular tissues. The MIB1 index was scored as approximately 10%. In molecular analyses of BRAF, the KIAA1549-BRAF (K16-B9) fusion gene was detected in all tumor regions, whereas BRAF V600E mutation was not detected by either conventional Sanger sequencing or the Eprobe-PCR method. Based on the results of the molecular analyses, this case was diagnosed as pilocytic astrocytoma.


Assuntos
Astrocitoma/diagnóstico , Neoplasias Encefálicas/diagnóstico , Astrocitoma/genética , Neoplasias Encefálicas/genética , Feminino , Humanos , Técnicas de Diagnóstico Molecular , Lobo Temporal/patologia , Adulto Jovem
10.
J Infect Dis ; 217(11): 1740-1749, 2018 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529215

RESUMO

Rabies virus (RABV) is the causative agent of fatal neurological disease. Cellular attachment is the initial and essential step for viral infections. Although extensive studies have demonstrated that RABV uses various target cell molecules to mediate infection, no specific molecule has been identified as an attachment factor for RABV infection. Here we demonstrate that cellular heparan sulfate (HS) supports RABV adhesion and subsequent entry into target cells. Enzymatic removal of HS reduced cellular susceptibility to RABV infection, and heparin, a highly sulfated form of HS, blocked viral adhesion and infection. The direct binding between RABV glycoprotein and heparin was demonstrated, and this interaction was shown to require HS N- and 6-O-sulfation. We also revealed that basic amino acids in the ectodomain of RABV glycoprotein serve as major determinants for the RABV-HS interaction. Collectively, our study highlights a previously undescribed role of HS as an attachment factor for RABV infection.


Assuntos
Proteoglicanas de Heparan Sulfato/metabolismo , Vírus da Raiva/patogenicidade , Raiva/patologia , Células A549 , Linhagem Celular , Linhagem Celular Tumoral , Glicoproteínas/metabolismo , Humanos , Vírus da Raiva/metabolismo , Internalização do Vírus
11.
Antiviral Res ; 154: 1-9, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29601893

RESUMO

Rabies remains an invariably fatal neurological disease despite the availability of a preventive vaccination and post-exposure prophylaxis that must be immediately administered to the exposed individual before symptom onset. There is no effective medication for treatment during the symptomatic phase. Ribavirin, a guanine nucleoside analog, is a potent inhibitor of rabies virus (RABV) replication in vitro but lacks clinical efficacy. Therefore, we attempted to identify potential ribavirin analogs with comparable or superior anti-RABV activity. Antiviral activity and cytotoxicity of the compounds were initially examined in human neuroblastoma cells. Among the tested compounds, two exhibited a 5- to 27-fold higher anti-RABV activity than ribavirin. Examination of the anti-RABV mechanisms of action of the compounds using time-of-addition and minigenome assays revealed that they inhibited viral genome replication and transcription. Addition of exogenous guanosine to RABV-infected cells diminished the antiviral activity of the compounds, suggesting that they are involved in guanosine triphosphate (GTP) pool depletion by inhibiting inosine monophosphate dehydrogenase (IMPDH). Taken together, our findings underline the potency of nucleoside analogs as a class of antiviral compounds for the development of novel agents against RABV.


Assuntos
Antivirais/farmacologia , Nucleosídeos/farmacologia , Vírus da Raiva/efeitos dos fármacos , Ribavirina/farmacologia , Animais , Linhagem Celular , Descoberta de Drogas , Humanos , Camundongos , Raiva/tratamento farmacológico , Raiva/prevenção & controle , Ribavirina/química , Replicação Viral/efeitos dos fármacos
12.
J Med Microbiol ; 67(3): 415-422, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29458559

RESUMO

Bats are an important natural reservoir of zoonotic viral pathogens. We previously isolated an alphaherpesvirus in fruit bats in Indonesia, and here establish the presence of viruses belonging to other taxa of the family Herpesviridae. We screened the same fruit bat population with pan-herpesvirus PCR and discovered 68 sequences of novel gammaherpesvirus, designated 'megabat gammaherpesvirus' (MgGHV). A phylogenetic analysis of approximately 3.4 kbp of continuous MgGHV sequences encompassing the glycoprotein B gene and DNA polymerase gene revealed that the MgGHV sequences are distinct from those of other reported gammaherpesviruses. Further analysis suggested the existence of co-infections of herpesviruses in Indonesian fruit bats. Our findings extend our understanding of the infectious cycles of herpesviruses in bats in Indonesia and the phylogenetic diversity of the gammaherpesviruses.


Assuntos
Quirópteros/virologia , Gammaherpesvirinae/genética , Gammaherpesvirinae/isolamento & purificação , Infecções por Herpesviridae/veterinária , Animais , Coinfecção/epidemiologia , Coinfecção/veterinária , Coinfecção/virologia , DNA Viral/genética , Reservatórios de Doenças , Gammaherpesvirinae/classificação , Herpesviridae/genética , Herpesviridae/isolamento & purificação , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Humanos , Indonésia/epidemiologia , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Proteínas Virais/genética
13.
J Gen Virol ; 98(11): 2771-2785, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28984241

RESUMO

Polyomaviruses (PyVs) are considered to be highly host-specific in different mammalian species, with no well-supported evidence for host-switching events. We examined the species diversity and host specificity of PyVs in horseshoe bats (Rhinolophus spp.), a broadly distributed and highly speciose mammalian genus. We annotated six PyV genomes, comprising four new PyV species, based on pairwise identity within the large T antigen (LTAg) coding region. Phylogenetic comparisons revealed two instances of highly related PyV species, one in each of the Alphapolyomavirus and Betapolyomavirus genera, present in different horseshoe bat host species (Rhinolophus blasii and R. simulator), suggestive of short-range host-switching events. The two pairs of Rhinolophus PyVs in different horseshoe bat host species were 99.9 and 88.8 % identical with each other over their respective LTAg coding sequences and thus constitute the same virus species. To corroborate the species identification of the bat hosts, we analysed mitochondrial cytb and a large nuclear intron dataset derived from six independent and neutrally evolving loci for bat taxa of interest. Bayesian estimates of the ages of the most recent common ancestors suggested that the near-identical and more distantly related PyV species diverged approximately 9.1E4 (5E3-2.8E5) and 9.9E6 (4E6-18E6) years before the present, respectively, in contrast to the divergence times of the bat host species: 12.4E6 (10.4E6-15.4E6). Our findings provide evidence that short-range host-switching of PyVs is possible in horseshoe bats, suggesting that PyV transmission between closely related mammalian species can occur.


Assuntos
Quirópteros , Variação Genética , Especificidade de Hospedeiro , Infecções por Polyomavirus/veterinária , Polyomavirus/classificação , Polyomavirus/isolamento & purificação , Infecções Tumorais por Vírus/veterinária , África , Animais , Antígenos Virais de Tumores/genética , Evolução Molecular , Filogenia , Polyomavirus/fisiologia , Infecções por Polyomavirus/virologia , Análise de Sequência de DNA , Homologia de Sequência , Infecções Tumorais por Vírus/virologia
14.
J Gen Virol ; 98(4): 726-738, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28430100

RESUMO

Bat species represent natural reservoirs for a number of high-consequence human pathogens. The present study investigated the diversity of polyomaviruses (PyVs) in Zambian insectivorous and fruit bat species. We describe the complete genomes from four newly proposed African bat PyV species employing the recently recommended criteria provided by the Polyomaviridae Study Group of the International Committee on Taxonomy of Viruses. A comprehensive phylogenetic and recombination analysis was performed to determine genetic relationships and the distribution of recombination events in PyV from mammalian and avian species. The novel species of PyV from Zambian bats segregated with members of the genera Alphapolyomavirus and Betapolyomavirus, forming monophyletic clades with bat and non-human primate PyVs. Miniopterus schreibersii polyomavirus 1 and 2 segregated in a clade with South American bat PyV species, Old World monkey and chimpanzee PyVs and Human polyomavirus 13 (New Jersey PyV). Interestingly, the newly described Egyptian fruit bat PyV, tentatively named Rousettus aegyptiacus polyomavirus 1, had the highest nucleotide sequence identity to species of PyV from Indonesian fruit bats, and Rhinolophus hildebrandtii polyomavirus 1 was most closely related to New World monkey PyVs. The distribution of recombination events in PyV genomes was non-random: recombination boundaries existed in the intergene region between VP1 and LTAg and also at the 3' end of VP2/3 in the structural genes, whereas infrequent recombination was present within the LTAg gene. These findings indicate that recombination within the LTAg gene has been negatively selected against during polyomaviral evolution and support the recent proposal for taxonomic classification based on LTAg to define novel PyV species.


Assuntos
Antígenos Virais de Tumores/genética , Quirópteros/virologia , Infecções por Polyomavirus/veterinária , Polyomavirus/classificação , Polyomavirus/isolamento & purificação , Recombinação Genética , Animais , Análise por Conglomerados , Genoma Viral , Filogenia , Polyomavirus/genética , Infecções por Polyomavirus/virologia , Análise de Sequência de DNA , Homologia de Sequência , Zâmbia
15.
J Biol Chem ; 291(12): 6559-68, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26817838

RESUMO

West Nile virus (WNV) particles assemble at and bud into the endoplasmic reticulum (ER) and are secreted from infected cells through the secretory pathway. However, the host factor related to these steps is not fully understood. Rab proteins, belonging to the Ras superfamily, play essential roles in regulating many aspects of vesicular trafficking. In this study, we sought to determine which Rab proteins are involved in intracellular trafficking of nascent WNV particles. RNAi analysis revealed that Rab8b plays a role in WNV particle release. We found that Rab8 and WNV antigen were colocalized in WNV-infected human neuroblastoma cells, and that WNV infection enhanced Rab8 expression in the cells. In addition, the amount of WNV particles in the supernatant of Rab8b-deficient cells was significantly decreased compared with that of wild-type cells. We also demonstrated that WNV particles accumulated in the recycling endosomes in WNV-infected cells. In summary, these results suggest that Rab8b is involved in trafficking of WNV particles from recycling endosomes to the plasma membrane.


Assuntos
Endossomos/enzimologia , Vírus do Nilo Ocidental/fisiologia , Proteínas rab de Ligação ao GTP/fisiologia , Animais , Transporte Biológico , Chlorocebus aethiops , Endossomos/virologia , Fibroblastos/enzimologia , Fibroblastos/virologia , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Camundongos Knockout , Transporte Proteico , Vesículas Transportadoras/virologia , Células Vero , Proteínas Virais , Liberação de Vírus , Replicação Viral
16.
Arch Virol ; 160(4): 1075-82, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25670407

RESUMO

Bats are an important natural reservoir for a variety of viral pathogens, including polyomaviruses (PyVs). The aims of this study were: (i) to determine which PyVs are present in bats in Indonesia and (ii) to analyze the evolutionary relationships between bat PyVs and other known PyVs. Using broad-spectrum polymerase chain reaction (PCR)-based assays, we screened PyV DNA isolated from spleen samples from 82 wild fruit bats captured in Indonesia. Fragments of the PyV genome were detected in 10 of the 82 spleen samples screened, and eight full-length viral genome sequences were obtained using an inverse PCR method. A phylogenetic analysis of eight whole viral genome sequences showed that BatPyVs form two distinct genetic clusters within the proposed genus Orthopolyomavirus that are genetically different from previously described BatPyVs. Interestingly, one group of BatPyVs is genetically related to the primate PyVs, including human PyV9 and trichodysplasia spinulosa-associated PyV. This study has identified the presence of novel PyVs in fruit bats in Indonesia and provides genetic information about these BatPyVs.


Assuntos
Quirópteros/virologia , Reservatórios de Doenças/virologia , Polyomavirus/isolamento & purificação , Animais , Sequência de Bases , Genoma Viral , Humanos , Indonésia , Dados de Sequência Molecular , Filogenia , Polyomavirus/classificação , Polyomavirus/genética , Baço/virologia , Proteínas Virais/genética
17.
J Vet Med Sci ; 76(5): 637-44, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24419975

RESUMO

Recently, we detected novel vervet monkey polyomavirus 1 (VmPyV) in a vervet monkey. Among amino acid sequences of major capsid protein VP1s of other polyomaviruses, VmPyV VP1 is the longest with additional amino acid residues in the C-terminal region. To examine the role of VmPyV VP1 in virion formation, we generated virus-like particles (VLPs) of VmPyV VP1, because VLP is a useful tool for the investigation of the morphological characters of polyomavirus virions. After the full-length VmPyV VP1 was subcloned into a mammalian expression plasmid, the plasmid was transfected into human embryonic kidney 293T (HEK293T) cells. Thereafter, VmPyV VLPs were purified from the cell lysates of the transfected cells via sucrose gradient sedimentation. Electron microscopic analyses revealed that VmPyV VP1 forms VLPs with a diameter of approximately 50 nm that are exclusively localized in cell nuclei. Furthermore, we generated VLPs consisting of the deletion mutant VmPyV VP1 (ΔC VP1) lacking the C-terminal 116 amino acid residues and compared its VLP formation efficiency and morphology to those of VLPs from wild-type VmPyV VP1 (WT VP1). WT and ΔC VP1 VLPs were similar in size, but the number of ΔC VP1 VLPs was much lower than that of WT VP1 VLPs in VP1-expressing HEK293T cells. These results suggest that the length of VP1 is unrelated to virion morphology; however, the C-terminal region of VmPyV VP1 affects the efficiency of its VLP formation.


Assuntos
Proteínas do Capsídeo/genética , Chlorocebus aethiops/virologia , Polyomavirus/genética , Vírion/genética , Animais , Proteínas do Capsídeo/ultraestrutura , Células HEK293 , Humanos , Immunoblotting , Imuno-Histoquímica , Microscopia Eletrônica , Plasmídeos/genética , Transfecção
18.
Uirusu ; 64(1): 25-34, 2014.
Artigo em Japonês | MEDLINE | ID: mdl-25765977

RESUMO

Recently, the family Polyomaviridae was classified as 3 genera, such as Orthopolyomavirus, Wukipolyomavirus which contain mammalian polyomaviruses and Avipolyomavirus which only contain avian polyomaviruses. We have recently isolated novel polyomaviruses, including Mastomys Polyoamvirus (MasPyV) and Vervet monkey Polyoamvirus-1 (VmPyV-1) by epidemiological activities and examined functions of their encoding proteins. In addition, we have been investigating the mechanisms of replication of human polyomavirus, JC polyomavirus (JCPyV). We recently obtained the results of function of JCVPyV-encoding proteins, including early protein (Large T antigen) and late proteins (VP1 and Agno). In this review, we summarized the data of our basic research activities.


Assuntos
Polyomavirus , Animais , Antígenos Virais de Tumores/fisiologia , Cafeína/farmacologia , Ciclo Celular/genética , Replicação do DNA , DNA Viral/genética , Genoma Viral/genética , Humanos , Polyomavirus/classificação , Polyomavirus/genética , Polyomavirus/fisiologia , Infecções por Polyomavirus/epidemiologia , Infecções por Polyomavirus/virologia , Infecções Tumorais por Vírus/epidemiologia , Infecções Tumorais por Vírus/virologia , Vírion/fisiologia , Replicação Viral/genética
19.
PLoS One ; 8(10): e76668, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130786

RESUMO

The capsid of the human polyomavirus JC virus (JCV) consists of 72 pentameric capsomeres of a major structural protein, Vp1. The cysteine residues of the related Vp1 of SV40 are known to contribute to Vp1 folding, pentamer formation, pentamer-pentamer contacts, and capsid stabilization. In light of the presence of a slight structural difference between JCV Vp1 and SV40 counterpart, the way the former folds could be either different from or similar to the latter. We found a difference: an important contribution of Vp1 cysteines to the formation of infectious virions, unique in JCV and absent in SV40. Having introduced amino acid substitution at each of six cysteines (C42, C80, C97, C200, C247, and C260) in JCV Vp1, we found that, when expressed in HeLa cells, the Vp1 level was decreased in C80A and C247A mutants, and remained normal in the other mutants. Additionally, the C80A and C247A Vp1-expressing cell extracts did not show the hemagglutination activity characteristic of JCV particles. The C80A and C247A mutant Vp1s were found to be less stable than the wild-type Vp1 in HeLa cells. When produced in a reconstituted in vitro protein translation system, these two mutant proteins were stable, suggesting that some cellular factors were responsible for their degradation. As determined by their sucrose gradient sedimentation profiles, in vitro translated C247A Vp1 formed pentamers, but in vitro translated C80A Vp1 was entirely monomeric. When individually incorporated into the JCV genome, the C80A and C247A mutants, but not the other Vp1 cysteine residues mutants, interfered with JCV infectivity. Furthermore, the C80A, but not the C247A, mutation prevented the nuclear localization of Vp1 in JCV genome transfected cells. These findings suggest that C80 of JCV Vp1 is required for Vp1 stability and pentamer formation, and C247 is involved in capsid assembly in the nucleus.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Cisteína , Vírus JC/metabolismo , Multimerização Proteica , Sequência de Aminoácidos , Substituição de Aminoácidos , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Núcleo Celular/virologia , Células HeLa , Humanos , Vírus JC/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutação , Dobramento de Proteína , Estabilidade Proteica , Estrutura Quaternária de Proteína
20.
Proc Natl Acad Sci U S A ; 110(46): 18668-73, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24167297

RESUMO

Viroporins, which are encoded by a wide range of animal viruses, oligomerize in host cell membranes and form hydrophilic pores that can disrupt a number of physiological properties of the cell. Little is known about the relationship between host cell proteins and viroporin activity. The human JC polyomavirus (JCV) is the causative agent of progressive multifocal leukoencephalopathy. The JCV-encoded agnoprotein, which is essential for viral replication, has been shown to act as a viroporin. Here we demonstrate that the JCV agnoprotein specifically interacts with adaptor protein complex 3 through its δ subunit. This interaction interrupts adaptor protein complex 3-mediated vesicular trafficking with suppression of the targeting of the protein to the lysosomal degradation pathway and instead permits the transport of agnoprotein to the cell surface with resulting membrane permeabilization. The findings demonstrate a previously undescribed paradigm in virus-host interactions allowing the host to regulate viroporin activity and suggest that the viroporins of other viruses may also be highly regulated by specific interactions with host cell proteins.


Assuntos
Complexo 3 de Proteínas Adaptadoras/metabolismo , Vírus JC/genética , Vírus JC/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Imunoprecipitação , Proteólise , Vesículas Transportadoras/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA