Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Clin Med ; 8(4)2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30987403

RESUMO

For the cancer genomics era, there is a need for clinically annotated close-to-patient cell lines suitable to investigate altered pathways and serve as high-throughput drug-screening platforms. This is particularly important for drug-resistant tumors like chondrosarcoma which has few models available. Here we established and characterized new cell lines derived from two secondary (CDS06 and CDS11) and one dedifferentiated (CDS-17) chondrosarcomas as well as another line derived from a CDS-17-generated xenograft (T-CDS17). These lines displayed cancer stem cell-related and invasive features and were able to initiate subcutaneous and/or orthotopic animal models. Different mutations in Isocitrate Dehydrogenase-1 (IDH1), Isocitrate Dehydrogenase-2 (IDH2), and Tumor Supressor P53 (TP53) and deletion of Cyclin Dependent Kinase Inhibitor 2A (CDKN2A) were detected both in cell lines and tumor samples. In addition, other mutations in TP53 and the amplification of Mouse Double Minute 2 homolog (MDM2) arose during cell culture in CDS17 cells. Whole exome sequencing analysis of CDS17, T-CDS17, and matched patient samples confirmed that cell lines kept the most relevant mutations of the tumor, uncovered new mutations and revealed structural variants that emerged during in vitro/in vivo growth. Altogether, this work expanded the panel of clinically and genetically-annotated chondrosarcoma lines amenable for in vivo studies and cancer stem cell (CSC) characterization. Moreover, it provided clues of the genetic drift of chondrosarcoma cells during the adaptation to grow conditions.

2.
Mol Genet Genomic Med ; 5(4): 336-359, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28717660

RESUMO

BACKGROUND: Next-generation sequencing (NGS) opens new options in clinical oncology, from therapy selection to genetic counseling. However, realization of this potential not only requires succeeding in the bioinformatics and interpretation of the results, but also in their integration into the clinical practice. We have developed a novel NGS diagnostic platform aimed at detecting (1) somatic genomic alterations associated with the response to approved targeted cancer therapies and (2) germline mutations predisposing to hereditary malignancies. METHODS: Next-generation sequencing libraries enriched in the exons of 215 cancer genes (97 for therapy selection and 148 for predisposition, with 30 informative for both applications), as well as selected introns from 17 genes involved in drug-related rearrangements, were prepared from 39 tumors (paraffin-embedded tissues/cytologies), 36 germline samples (blood) and 10 cell lines using hybrid capture. Analysis of NGS results was performed with specifically developed bioinformatics pipelines. RESULTS: The platform detects single-nucleotide variants (SNVs) and insertions/deletions (indels) with sensitivity and specificity >99.5% (allelic frequency ≥0.1), as well as copy-number variants (CNVs) and rearrangements. Somatic testing identified tailored approved targeted drugs in 35/39 tumors (89.74%), showing a diagnostic yield comparable to that of leading commercial platforms. A somatic EGFR p.E746_S752delinsA mutation in a mediastinal metastasis from a breast cancer prompted its anatomopathologic reassessment, its definite reclassification as a lung cancer and its treatment with gefitinib (partial response sustained for 15 months). Testing of 36 germline samples identified two pathogenic mutations (in CDKN2A and BRCA2). We propose a strategy for interpretation and reporting of results adaptable to the aim of the request, the availability of tumor and/or normal samples and the scope of the informed consent. CONCLUSION: With an adequate methodology, it is possible to translate to the clinical practice the latest advances in precision oncology, integrating under the same platform the identification of somatic and germline genomic alterations.

3.
J Mol Diagn ; 19(1): 99-106, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27863261

RESUMO

Identification and characterization of genetic alterations are essential for diagnosis of multiple myeloma and may guide therapeutic decisions. Currently, genomic analysis of myeloma to cover the diverse range of alterations with prognostic impact requires fluorescence in situ hybridization (FISH), single nucleotide polymorphism arrays, and sequencing techniques, which are costly and labor intensive and require large numbers of plasma cells. To overcome these limitations, we designed a targeted-capture next-generation sequencing approach for one-step identification of IGH translocations, V(D)J clonal rearrangements, the IgH isotype, and somatic mutations to rapidly identify risk groups and specific targetable molecular lesions. Forty-eight newly diagnosed myeloma patients were tested with the panel, which included IGH and six genes that are recurrently mutated in myeloma: NRAS, KRAS, HRAS, TP53, MYC, and BRAF. We identified 14 of 17 IGH translocations previously detected by FISH and three confirmed translocations not detected by FISH, with the additional advantage of breakpoint identification, which can be used as a target for evaluating minimal residual disease. IgH subclass and V(D)J rearrangements were identified in 77% and 65% of patients, respectively. Mutation analysis revealed the presence of missense protein-coding alterations in at least one of the evaluating genes in 16 of 48 patients (33%). This method may represent a time- and cost-effective diagnostic method for the molecular characterization of multiple myeloma.


Assuntos
Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Técnicas de Diagnóstico Molecular , Mieloma Múltiplo/genética , Idoso , Feminino , Frequência do Gene , Genes Neoplásicos , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/diagnóstico , Mutação
4.
Oncotarget ; 4(11): 1919-32, 2013 11.
Artigo em Inglês | MEDLINE | ID: mdl-24243807

RESUMO

Proteolytic enzymes play important roles during tumor development and progression through their ability to promote cell growth or by facilitating the invasion of surrounding tissues. The human genome contains more than 570 protease-coding genes, many of them forming functional networks, which has forced the use of global strategies for the analysis of this group of enzymes. In this study, we have designed a new quantitative PCR-based device for profiling the entire degradome in human malignancies. We have used this method to evaluate protease expression levels in colorectal carcinomas with the finding that most proteases with altered expression in these tumors exert their function in the extracellular compartment. In addition, we have found that among genes encoding repressed proteases there was a higher proportion with somatic mutations in colorectal cancer when compared to genes coding for upregulated proteases (14% vs. 4%, p<0.05). One of these genes, MASP3, is consistently repressed in colorectal carcinomas as well as in colorectal cancer cell lines when compared to normal colonic mucosa. Functional analysis of this gene revealed that ectopic expression of MASP3 reduces cell proliferation in vitro and restrains subcutaneous tumor growth, whereas its downregulation induces an increase in the tumorigenic potential of colorectal cancer cells. These results provide new insights into the diversity of proteases associated with cancer and support the utility of degradome profiling to identify novel proteases with tumor-defying functions.


Assuntos
Neoplasias Colorretais/enzimologia , Peptídeo Hidrolases/metabolismo , Animais , Células CACO-2 , Proteínas de Caenorhabditis elegans , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Células HCT116 , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Peptídeo Hidrolases/genética , Transfecção
5.
Nat Genet ; 44(1): 47-52, 2011 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-22158541

RESUMO

Here we perform whole-exome sequencing of samples from 105 individuals with chronic lymphocytic leukemia (CLL), the most frequent leukemia in adults in Western countries. We found 1,246 somatic mutations potentially affecting gene function and identified 78 genes with predicted functional alterations in more than one tumor sample. Among these genes, SF3B1, encoding a subunit of the spliceosomal U2 small nuclear ribonucleoprotein (snRNP), is somatically mutated in 9.7% of affected individuals. Further analysis in 279 individuals with CLL showed that SF3B1 mutations were associated with faster disease progression and poor overall survival. This work provides the first comprehensive catalog of somatic mutations in CLL with relevant clinical correlates and defines a large set of new genes that may drive the development of this common form of leukemia. The results reinforce the idea that targeting several well-known genetic pathways, including mRNA splicing, could be useful in the treatment of CLL and other malignancies.


Assuntos
Leucemia Linfocítica Crônica de Células B/genética , Mutação , Fosfoproteínas/genética , Ribonucleoproteína Nuclear Pequena U2/genética , Sequência de Aminoácidos , Progressão da Doença , Exoma , Humanos , Leucemia Linfocítica Crônica de Células B/mortalidade , Fatores de Processamento de RNA , Alinhamento de Sequência
6.
Nature ; 475(7354): 101-5, 2011 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-21642962

RESUMO

Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer.


Assuntos
Genoma Humano/genética , Leucemia Linfocítica Crônica de Células B/genética , Mutação/genética , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Análise Mutacional de DNA , Humanos , Carioferinas/genética , Dados de Sequência Molecular , Fator 88 de Diferenciação Mieloide/química , Fator 88 de Diferenciação Mieloide/genética , Receptor Notch1/genética , Receptores Citoplasmáticos e Nucleares/genética , Reprodutibilidade dos Testes , Proteína Exportina 1
7.
Methods Mol Biol ; 622: 3-29, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20135273

RESUMO

Metalloproteases comprise a heterogeneous group of proteolytic enzymes whose main characteristic is the utilization of a metal ion to polarize a water molecule and perform hydrolytic reactions. These enzymes represent the most densely populated catalytic class of proteases in many organisms and play essential roles in multiple biological processes. In this chapter, we will first present a general description of the complexity of metalloproteases in the context of the degradome, which is defined as the complete set of protease genes encoded by the genome of a certain organism. We will also discuss the functional relevance of these enzymes in a large variety of biological and pathological conditions. Finally, we will analyze in more detail three families of metalloproteases: ADAMs (a disintegrin and metalloproteinase), ADAMTSs (ADAMs with thrombospondin domains), and MMPs (matrix metalloproteinases) which have a growing relevance in a number of human pathologies including cancer, arthritis, neurodegenerative disorders, and cardiovascular diseases.


Assuntos
Metaloproteases/metabolismo , Processamento de Proteína Pós-Traducional , Motivos de Aminoácidos , Animais , Biocatálise , Doença , Humanos , Metaloproteases/química , Metaloproteases/classificação
8.
Nature ; 463(7278): 191-6, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20016485

RESUMO

All cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first comprehensive catalogue of somatic mutations from an individual cancer. The catalogue provides remarkable insights into the forces that have shaped this cancer genome. The dominant mutational signature reflects DNA damage due to ultraviolet light exposure, a known risk factor for malignant melanoma, whereas the uneven distribution of mutations across the genome, with a lower prevalence in gene footprints, indicates that DNA repair has been preferentially deployed towards transcribed regions. The results illustrate the power of a cancer genome sequence to reveal traces of the DNA damage, repair, mutation and selection processes that were operative years before the cancer became symptomatic.


Assuntos
Genes Neoplásicos/genética , Genoma Humano/genética , Mutação/genética , Neoplasias/genética , Adulto , Linhagem Celular Tumoral , Dano ao DNA/genética , Análise Mutacional de DNA , Reparo do DNA/genética , Dosagem de Genes/genética , Humanos , Perda de Heterozigosidade/genética , Masculino , Melanoma/etiologia , Melanoma/genética , MicroRNAs/genética , Mutagênese Insercional/genética , Neoplasias/etiologia , Polimorfismo de Nucleotídeo Único/genética , Medicina de Precisão , Deleção de Sequência/genética , Raios Ultravioleta
9.
Nature ; 463(7278): 184-90, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20016488

RESUMO

Cancer is driven by mutation. Worldwide, tobacco smoking is the principal lifestyle exposure that causes cancer, exerting carcinogenicity through >60 chemicals that bind and mutate DNA. Using massively parallel sequencing technology, we sequenced a small-cell lung cancer cell line, NCI-H209, to explore the mutational burden associated with tobacco smoking. A total of 22,910 somatic substitutions were identified, including 134 in coding exons. Multiple mutation signatures testify to the cocktail of carcinogens in tobacco smoke and their proclivities for particular bases and surrounding sequence context. Effects of transcription-coupled repair and a second, more general, expression-linked repair pathway were evident. We identified a tandem duplication that duplicates exons 3-8 of CHD7 in frame, and another two lines carrying PVT1-CHD7 fusion genes, indicating that CHD7 may be recurrently rearranged in this disease. These findings illustrate the potential for next-generation sequencing to provide unprecedented insights into mutational processes, cellular repair pathways and gene networks associated with cancer.


Assuntos
Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Mutação/genética , Nicotiana/efeitos adversos , Carcinoma de Pequenas Células do Pulmão/etiologia , Carcinoma de Pequenas Células do Pulmão/genética , Fumar/efeitos adversos , Carcinógenos/toxicidade , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA/efeitos dos fármacos , Variações do Número de Cópias de DNA/genética , Dano ao DNA/genética , DNA Helicases/genética , Análise Mutacional de DNA , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Éxons/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma Humano/efeitos dos fármacos , Genoma Humano/genética , Humanos , Mutagênese Insercional/efeitos dos fármacos , Mutagênese Insercional/genética , Mutação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Deleção de Sequência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA