Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 106(1): 8-22, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33577114

RESUMO

Genome editing by RNA-guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent loci can be targeted simultaneously by multiplexing has not been well documented. Here, we developed a toolkit, based on a highly intron-optimized zCas9i gene, which allows assembly of nuclease constructs expressing up to 32 single guide RNAs (sgRNAs). We used this toolkit to explore the limits of multiplexing in two major model species, and report on the isolation of transgene-free octuple (8×) Nicotiana benthamiana and duodecuple (12×) Arabidopsis thaliana mutant lines in a single generation (T1 and T2 , respectively). We developed novel counter-selection markers for N. benthamiana, most importantly Sl-FAST2, comparable to the well-established Arabidopsis seed fluorescence marker, and FCY-UPP, based on the production of toxic 5-fluorouracil in the presence of a precursor. Targeting eight genes with an array of nine different sgRNAs and relying on FCY-UPP for selection of non-transgenic T1 , we identified N. benthamiana mutant lines with astonishingly high efficiencies: All analyzed plants carried mutations in all genes (approximately 112/116 target sites edited). Furthermore, we targeted 12 genes by an array of 24 sgRNAs in A. thaliana. Efficiency was significantly lower in A. thaliana, and our results indicate Cas9 availability is the limiting factor in such higher-order multiplexing applications. We identified a duodecuple mutant line by a combination of phenotypic screening and amplicon sequencing. The resources and results presented provide new perspectives for how multiplexing can be used to generate complex genotypes or to functionally interrogate groups of candidate genes.


Assuntos
Arabidopsis/genética , Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Sistemas CRISPR-Cas/genética , Edição de Genes , Genoma de Planta/genética , Mutação/genética
2.
Plant J ; 106(4): 1008-1023, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33629456

RESUMO

Nucleotide-binding domain-leucine-rich repeat-type immune receptors (NLRs) protect plants against pathogenic microbes through intracellular detection of effector proteins. However, this comes at a cost, as NLRs can also induce detrimental autoimmunity in genetic interactions with foreign alleles. This may occur when independently evolved genomes are combined in inter- or intraspecific crosses, or when foreign alleles are introduced by mutagenesis or transgenesis. Most autoimmunity-inducing NLRs are encoded within highly variable NLR gene clusters with no known immune functions, which were termed autoimmune risk loci. Whether risk NLRs differ from sensor NLRs operating in natural pathogen resistance and how risk NLRs are activated in autoimmunity is unknown. Here, we analyzed the DANGEROUS MIX2 risk locus, a major autoimmunity hotspot in Arabidopsis thaliana. By gene editing and heterologous expression, we show that a single gene, DM2h, is necessary and sufficient for autoimmune induction in three independent cases of autoimmunity in accession Landsberg erecta. We focus on autoimmunity provoked by an EDS1-yellow fluorescent protein (YFP)NLS fusion protein to characterize DM2h functionally and determine features of EDS1-YFPNLS activating the immune receptor. Our data suggest that risk NLRs function in a manner reminiscent of sensor NLRs, while autoimmunity-inducing properties of EDS1-YFPNLS in this context are unrelated to the protein's functions as an immune regulator. We propose that autoimmunity, at least in some cases, may be caused by spurious, stochastic interactions of foreign alleles with coincidentally matching risk NLRs.


Assuntos
Arabidopsis/genética , Imunidade Inata/genética , Proteínas NLR/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Arabidopsis/imunologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autoimunidade/genética , Fusão Gênica , Genes Reporter , Loci Gênicos , Proteínas NLR/genética , Nicotiana/genética , Nicotiana/imunologia
3.
Plant Cell ; 31(10): 2456-2474, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31266900

RESUMO

Heterodimeric complexes containing the lipase-like protein ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) are regarded as central regulators of plant innate immunity. In this context, a complex of EDS1 with PHYTOALEXIN DEFICIENT4 (PAD4) is required for basal resistance and signaling downstream of immune receptors containing an N-terminal Toll-interleukin-1 receptor-like domain (TNLs) in Arabidopsis (Arabidopsis thaliana). Here we analyze EDS1 functions in the model Solanaceous plant Nicotiana benthamiana (Nb). Stable Nb mutants deficient in EDS1 complexes are not impaired in basal resistance, a finding which contradicts a general role for EDS1 in immunity. In Nb, PAD4 demonstrated no detectable immune functions, but TNL-mediated resistance responses required EDS1 complexes incorporating a SENESCENCE ASSOCIATED GENE101 (SAG101) isoform. Intriguingly, SAG101 is restricted to those genomes also encoding TNL receptors, and we propose it may be required for TNL-mediated immune signaling in most plants, except the Brassicaceae. Transient complementation in Nb was used for accelerated mutational analyses while avoiding complex biotic interactions. We identify a large surface essential for EDS1-SAG101 immune functions that extends from the N-terminal lipase domains to the C-terminal EDS1-PAD4 domains and might mediate interaction partner recruitment. Furthermore, this work demonstrates the value of genetic resources in Nb, which will facilitate elucidation of EDS1 functions.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nicotiana/imunologia , Imunidade Vegetal/genética , Receptores de Superfície Celular/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Infecções Bacterianas/imunologia , Hidrolases de Éster Carboxílico/genética , Morte Celular/genética , Morte Celular/imunologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Imunidade Inata/genética , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Solanum lycopersicum/metabolismo , Filogenia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Isoformas de Proteínas/genética , Receptores de Superfície Celular/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia
4.
PLoS One ; 13(5): e0197185, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29847550

RESUMO

Standardized DNA assembly strategies facilitate the generation of multigene constructs from collections of building blocks in plant synthetic biology. A common syntax for hierarchical DNA assembly following the Golden Gate principle employing Type IIs restriction endonucleases was recently developed, and underlies the Modular Cloning and GoldenBraid systems. In these systems, transcriptional units and/or multigene constructs are assembled from libraries of standardized building blocks, also referred to as phytobricks, in several hierarchical levels and by iterative Golden Gate reactions. Here, a toolkit containing further modules for the novel DNA assembly standards was developed. Intended for use with Modular Cloning, most modules are also compatible with GoldenBraid. Firstly, a collection of approximately 80 additional phytobricks is provided, comprising e.g. modules for inducible expression systems, promoters or epitope tags. Furthermore, DNA modules were developed for connecting Modular Cloning and Gateway cloning, either for toggling between systems or for standardized Gateway destination vector assembly. Finally, first instances of a "peripheral infrastructure" around Modular Cloning are presented: While available toolkits are designed for the assembly of plant transformation constructs, vectors were created to also use coding sequence-containing phytobricks directly in yeast two hybrid interaction or bacterial infection assays. The presented material will further enhance versatility of hierarchical DNA assembly strategies.


Assuntos
Clonagem Molecular/métodos , Engenharia Genética/métodos , Vetores Genéticos/química , Nicotiana/genética , Proteínas de Plantas/genética , Plasmídeos/química , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Calmodulina/genética , Calmodulina/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Vetores Genéticos/metabolismo , Fases de Leitura Aberta , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
5.
Plant Biotechnol J ; 16(11): 1892-1903, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29577542

RESUMO

Microrchidia (MORC) proteins comprise a family of proteins that have been identified in prokaryotes and eukaryotes. They are defined by two hallmark domains: a GHKL-type ATPase and an S5-fold. In plants, MORC proteins were first discovered in a genetic screen for Arabidopsis thaliana mutants compromised for resistance to a viral pathogen. Subsequent studies expanded their role in plant immunity and revealed their involvement in gene silencing and genome stabilization. Little is known about the role of MORC proteins of cereals, especially because knockout (KO) mutants were not available and assessment of loss of function relied only on RNAi strategies, which were arguable, given that MORC proteins in itself are influencing gene silencing. Here, we used a Streptococcus pyogenes Cas9 (SpCas9)-mediated KO strategy to functionally study HvMORC1, one of the current seven MORC members of barley. Using a novel barley RNA Pol III-dependent U3 small nuclear RNA (snRNA) promoter to drive expression of the synthetic single guide RNA (sgRNA), we achieved a very high mutation frequency in HvMORC1. High frequencies of mutations were detectable by target sequencing in the callus, the T0 generation (77%) and T1 generation (70%-100%), which constitutes an important improvement of the gene-editing technology in cereals. Corroborating and extending earlier findings, SpCas9-edited hvmorc1-KO barley, in clear contrast to Arabidopsis atmorc1 mutants, had a distinct phenotype of increased disease resistance to fungal pathogens, while morc1 mutants of either plant showed de-repressed expression of transposable elements (TEs), substantiating that plant MORC proteins contribute to genome stabilization in monocotyledonous and dicotyledonous plants.


Assuntos
Adenosina Trifosfatases/genética , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Edição de Genes/métodos , Hordeum/genética , Proteínas de Plantas/genética , Adenosina Trifosfatases/fisiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/genética , Homozigoto , Proteínas de Plantas/fisiologia , Regiões Promotoras Genéticas/genética , RNA Polimerase III/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo
6.
Plant J ; 89(1): 155-168, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27579989

RESUMO

Genome editing facilitated by Cas9-based RNA-guided nucleases (RGNs) is becoming an increasingly important and popular technique for reverse genetics in both model and non-model species. So far, RGNs were mainly applied for the induction of point mutations, and one major challenge consists in the detection of genome-edited individuals from a mutagenized population. Also, point mutations are not appropriate for functional dissection of non-coding DNA. Here, the multiplexing capacity of a newly developed genome editing toolkit was exploited for the induction of inheritable chromosomal deletions at six different loci in Nicotiana benthamiana and Arabidopsis. In both species, the preferential formation of small deletions was observed, suggesting reduced efficiency with increasing deletion size. Importantly, small deletions (<100 bp) were detected at high frequencies in N. benthamiana T0 and Arabidopsis T2 populations. Thus, targeting of small deletions by paired nucleases represents a simple approach for the generation of mutant alleles segregating as size polymorphisms in subsequent generations. Phenotypically selected deletions of up to 120 kb occurred at low frequencies in Arabidopsis, suggesting larger population sizes for the discovery of valuable alleles from addressing gene clusters or non-coding DNA for deletion by programmable nucleases.


Assuntos
Arabidopsis/genética , Aberrações Cromossômicas , Cromossomos de Plantas/genética , Edição de Genes/métodos , Nicotiana/genética , Alelos , Sequência de Bases , Sistemas CRISPR-Cas , Genoma de Planta/genética , Modelos Genéticos , Mutação , Fenótipo , Plantas Geneticamente Modificadas , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA