Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
NPJ Genom Med ; 8(1): 39, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993442

RESUMO

Spondyloepimetaphyseal dysplasia with severe short stature, RPL13-related (SEMD-RPL13), MIM#618728), is a rare autosomal dominant disorder characterized by short stature and skeletal changes such as mild spondylar and epimetaphyseal dysplasia affecting primarily the lower limbs. The genetic cause was first reported in 2019 by Le Caignec et al., and six disease-causing variants in the gene coding for a ribosomal protein, RPL13 (NM_000977.3) have been identified to date. This study presents clinical and radiographic data from 12 affected individuals aged 2-64 years from seven unrelated families, showing highly variable manifestations. The affected individuals showed a range from mild to severe short stature, retaining the same radiographic pattern of spondylar- and epi-metaphyseal dysplasia, but with varying severity of the hip and knee deformities. Two new missense variants, c.548 G>A, p.(Arg183His) and c.569 G>T, p.(Arg190Leu), and a previously known splice variant c.477+1G>A were identified, confirming mutational clustering in a highly specific RNA binding motif. Structural analysis and interpretation of the variants' impact on the protein suggests that disruption of extra-ribosomal functions of the protein through binding of mRNA may play a role in the skeletal phenotype of SEMD-RPL13. In addition, we present gonadal and somatic mosaicism for the condition.

2.
Front Mol Biosci ; 9: 890851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836931

RESUMO

Pentameric ligand-gated ion channels (PLGICs) are a family of proteins that convert chemical signals into ion fluxes through cellular membranes. Their structures are highly conserved across all kingdoms from bacteria to eukaryotes. Beyond their classical roles in neurotransmission and neurological disorders, PLGICs have been recently related to cell proliferation and cancer. Here, we focus on the best characterized eukaryotic channel, the glycine receptor (GlyR), to investigate its mutational patterns in genomic-wide tumor screens and compare them with mutations linked to hyperekplexia (HPX), a Mendelian neuromotor disease that disrupts glycinergic currents. Our analysis highlights that cancer mutations significantly accumulate across TM1 and TM2, partially overlapping with HPX changes. Based on 3D-clustering, conservation, and phenotypic data, we select three mutations near the pore, expected to impact GlyR conformation, for further study by molecular dynamics (MD). Using principal components from experimental GlyR ensembles as framework, we explore the motions involved in transitions from the human closed and desensitized structures and how they are perturbed by mutations. Our MD simulations show that WT GlyR spontaneously explores opening and re-sensitization transitions that are significantly impaired by mutations, resulting in receptors with altered permeability and desensitization properties in agreement with HPX functional data.

4.
Mol Cell Oncol ; 6(5): e1630798, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31528699

RESUMO

EGFR mutations display striking organ-site asymmetry and heterogeneity. We have shown that structurally diverse extracellular mutations, typical of glioblastomas, converge to a similar intermediate conformation, which can be synergistically targeted extra- and intracelullarly by antibody mAb806 and type-II kinase inhibitors. Our findings reveal convergence behind heterogeneity, paving the way for allostery-based co-targeting.

6.
Proc Natl Acad Sci U S A ; 116(20): 10009-10018, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31028138

RESUMO

Epidermal growth factor receptor (EGFR) signaling is initiated by a large ligand-favored conformational change of the extracellular domain (ECD) from a closed, self-inhibited tethered monomer, to an open untethered state, which exposes a loop required for strong dimerization and activation. In glioblastomas (GBMs), structurally heterogeneous missense and deletion mutations concentrate at the ECD for unclear reasons. We explore the conformational impact of GBM missense mutations, combining elastic network models (ENMs) with multiple molecular dynamics (MD) trajectories. Our simulations reveal that the main missense class, located at the I-II interface away from the self-inhibitory tether, can unexpectedly favor spontaneous untethering to a compact intermediate state, here validated by small-angle X-ray scattering (SAXS). Significantly, such intermediate is characterized by the rotation of a large ECD fragment (N-TR1), deleted in the most common GBM mutation, EGFRvIII, and that makes accessible a cryptic epitope characteristic of cancer cells. This observation suggested potential structural equivalence of missense and deletion ECD changes in GBMs. Corroborating this hypothesis, our FACS, in vitro, and in vivo data demonstrate that entirely different ECD variants all converge to remove N-TR1 steric hindrance from the 806-epitope, which we show is allosterically coupled to an intermediate kinase and hallmarks increased oncogenicity. Finally, the detected extraintracellular coupling allows for synergistic cotargeting of the intermediate with mAb806 and inhibitors, which is proved herein.


Assuntos
Genes erbB-1 , Glioblastoma/genética , Epitopos , Células HEK293 , Humanos , Mutação de Sentido Incorreto
7.
Cancer Cell ; 35(3): 504-518.e7, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30827889

RESUMO

Ionizing radiation (IR) and chemotherapy are standard-of-care treatments for glioblastoma (GBM) patients and both result in DNA damage, however, the clinical efficacy is limited due to therapeutic resistance. We identified a mechanism of such resistance mediated by phosphorylation of PTEN on tyrosine 240 (pY240-PTEN) by FGFR2. pY240-PTEN is rapidly elevated and bound to chromatin through interaction with Ki-67 in response to IR treatment and facilitates the recruitment of RAD51 to promote DNA repair. Blocking Y240 phosphorylation confers radiation sensitivity to tumors and extends survival in GBM preclinical models. Y240F-Pten knockin mice showed radiation sensitivity. These results suggest that FGFR-mediated pY240-PTEN is a key mechanism of radiation resistance and is an actionable target for improving radiotherapy efficacy.


Assuntos
Neoplasias Encefálicas/terapia , Núcleo Celular/metabolismo , Glioma/terapia , PTEN Fosfo-Hidrolase/metabolismo , Pirimidinas/administração & dosagem , Tolerância a Radiação/efeitos dos fármacos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Reparo do DNA/efeitos dos fármacos , Feminino , Glioma/metabolismo , Humanos , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Pirimidinas/farmacologia , Rad51 Recombinase/metabolismo , Tirosina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancer Cell ; 34(1): 163-177.e7, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29990498

RESUMO

We explored the clinical and pathological impact of epidermal growth factor receptor (EGFR) extracellular domain missense mutations. Retrospective assessment of 260 de novo glioblastoma patients revealed a significant reduction in overall survival of patients having tumors with EGFR mutations at alanine 289 (EGFRA289D/T/V). Quantitative multi-parametric magnetic resonance imaging analyses indicated increased tumor invasion for EGFRA289D/T/V mutants, corroborated in mice bearing intracranial tumors expressing EGFRA289V and dependent on ERK-mediated expression of matrix metalloproteinase-1. EGFRA289V tumor growth was attenuated with an antibody against a cryptic epitope, based on in silico simulation. The findings of this study indicate a highly invasive phenotype associated with the EGFRA289V mutation in glioblastoma, postulating EGFRA289V as a molecular marker for responsiveness to therapy with EGFR-targeting antibodies.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Neoplasias Encefálicas/genética , Receptores ErbB/genética , Glioblastoma/genética , Imageamento por Ressonância Magnética , Mutação de Sentido Incorreto , Adolescente , Adulto , Idoso , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Criança , Pré-Escolar , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Predisposição Genética para Doença , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Humanos , Interpretação de Imagem Assistida por Computador , Lactente , Recém-Nascido , Aprendizado de Máquina , Masculino , Metaloproteinase 1 da Matriz/metabolismo , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Fenótipo , Fosforilação , Valor Preditivo dos Testes , Domínios Proteicos , Estudos Retrospectivos , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA