Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298860

RESUMO

Extra virgin olive oil (EVOO) should be naturally free of polycyclic aromatic hydrocarbon (PAH) contamination. PAHs are carcinogenic and toxic, and may cause human health and safety problems. This work aims to detect benzo[a]pyrene residues in EVOO using an easily adaptive optical methodology. This approach, which is based on fluorescence spectroscopy, does not require any sample pretreatment or prior extraction of PAH content from the sample, and is reported for the first time herein. The detection of benzo[a]pyrene even at low concentrations in extra virgin olive oil samples demonstrates fluorescence spectroscopy's capability to ensure food safety.


Assuntos
Benzo(a)pireno , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Azeite de Oliva/química , Espectrometria de Fluorescência , Carcinógenos
2.
Molecules ; 27(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35209139

RESUMO

Extra virgin olive oil (EVOO) is a key component of the Mediterranean diet, with several health benefits derived from its consumption. Moreover, due to its eminent market position, EVOO has been thoroughly studied over the last several years, aiming at its authentication, but also to reveal the chemical profile inherent to its beneficial properties. In the present work, a comparative study was conducted to assess Greek EVOOs' quality and authentication utilizing different analytical approaches, both targeted and untargeted. 173 monovarietal EVOOs from three emblematic Greek cultivars (Koroneiki, Kolovi and Adramytiani), obtained during the harvesting years of 2018-2020, were analyzed and quantified as per their fatty acids methyl esters (FAMEs) composition via the official method (EEC) No 2568/91, as well as their bioactive content through liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) methodology. In addition to FAMEs analysis, EVOO samples were also analyzed via HRMS-untargeted metabolomics and optical spectroscopy techniques (visible absorption, fluorescence and Raman). The data retrieved from all applied techniques were analyzed with Machine Learning methods for the authentication of the EVOOs' variety. The models' predictive performance was calculated through test samples, while for further evaluation 30 commercially available EVOO samples were also examined in terms of variety. To the best of our knowledge, this is the first study where different techniques from the fields of standard analysis, spectrometry and optical spectroscopy are applied to the same EVOO samples, providing strong insight into EVOOs chemical profile and a comparative evaluation through the different platforms.


Assuntos
Análise de Alimentos , Qualidade dos Alimentos , Azeite de Oliva/química , Azeite de Oliva/normas , Ácidos Graxos/análise , Análise de Alimentos/métodos , Ingredientes de Alimentos/análise , Grécia , Metabolômica/métodos , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA