Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Mol Immunol ; 153: 10-24, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36402067

RESUMO

The JAK/STAT (Janus Kinase/Signal Transducer and Activator of Transcription) pathway plays a pivotal role in macrophage polarization, but other signaling routes may also be involved. The aim of this study was to reveal the relationship of activation between rat peritoneal macrophages and their polarization, to detect the signaling routes involved, and find selective protein kinase inhibitors decreasing the production of inflammatory proteins in activated peritoneal macrophages. Rat macrophages were elicited with i.p. casein injection. CD80 and CD206 markers, NOS2 (Nitric oxide synthase 2), arginase, cytokines and phagocytosis were investigated by ELISA (Enzyme Linked Immunosorbent Assay), Western Blot, fluorescent microscopic and flow cytometry. Statistical methods were ANOVA (Analysis Of Variance) and Student t-tests. Resident and elicited cells expressed both CD80 and CD206 polarization markers. The involvement of MAPK (mitogen-activated protein kinases) and JAK/STAT pathways in the polarization was evidenced by a phosphorylation array, supported by Western blotting, by cytokine markers and by the inhibitory effects of kinase inhibitors. The expression of NOS2 and inflammatory cytokines was higher in elicited cells suggesting their M1 polarization. This effect was reduced by the inhibitors of MAPK and JAK/STAT pathways. Phagocytosis was also higher in elicited macrophages and decreased by these inhibitors. Nevertheless, they cannot change macrophage polarization unambiguously, as levels of CD80 and CD206 markers were not changed. For comparison, human blood macrophages were also studied. Similar effects and several differences were observed between the two types of macrophages, suggesting the role of the previous differentiation in defining their characteristics. Selected anti-cancer protein kinase inhibitors of p38, MAPK and JAK/STAT pathways are possible candidates for the therapy of inflammatory diseases.


Assuntos
Citocinas , Macrófagos Peritoneais , Óxido Nítrico Sintase Tipo II , Inibidores de Proteínas Quinases , Animais , Humanos , Ratos , Citocinas/metabolismo , Janus Quinases , Macrófagos Peritoneais/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fagocitose , Inibidores de Proteínas Quinases/farmacologia
2.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216230

RESUMO

Fibroblasts play a central role in diseases associated with excessive deposition of extracellular matrix (ECM), including idiopathic pulmonary fibrosis. Investigation of different properties of fibroblasts, such as migration, proliferation, and collagen-rich ECM production is unavoidable both in basic research and in the development of antifibrotic drugs. In the present study we developed a cost-effective, 96-well plate-based method to examine the migration of fibroblasts, as an alternative approach to the gold standard scratch assay, which has numerous limitations. This article presents a detailed description of our transient agarose spot (TAS) assay, with instructions for its routine application. Advantages of combined use of different functional assays for fibroblast activation in drug development are also discussed by examining the effect of nintedanib-an FDA approved drug against IPF-on lung fibroblasts.


Assuntos
Bioensaio/métodos , Movimento Celular/fisiologia , Sefarose/química , Células A549 , Animais , Células CACO-2 , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Matriz Extracelular/fisiologia , Fibroblastos/fisiologia , Células HT29 , Humanos , Fibrose Pulmonar Idiopática/fisiopatologia , Pulmão/fisiologia , Pulmão/fisiopatologia , Ratos
3.
Mol Cancer Ther ; 21(4): 667-676, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086953

RESUMO

Prostate cancer remains a major cause of male mortality. Genetic alteration of the PI3K/AKT/mTOR pathway is one of the key events in tumor development and progression in prostate cancer, with inactivation of the PTEN tumor suppressor being very common in this cancer type. Extensive evaluation has been performed on the therapeutic potential of PI3K/AKT/mTOR inhibitors and the resistance mechanisms arising in patients with PTEN-mutant background. However, in patients with a PTEN wild-type phenotype, PI3K/AKT/mTOR inhibitors have not demonstrated efficacy, and this remains an area of clinical unmet need. In this study, we have investigated the response of PTEN wild-type prostate cancer cell lines to the dual PI3K/mTOR inhibitor DS-7423 alone or in combination with HER2 inhibitors or mGluR1 inhibitors. Upon treatment with the dual PI3K/mTOR inhibitor DS-7423, PTEN wild-type prostate cancer CWR22/22RV1 cells upregulate expression of the proteins PSMA, mGluR1, and the tyrosine kinase receptor HER2, while PTEN-mutant LNCaP cells upregulate androgen receptor and HER3. PSMA, mGluR1, and HER2 exert control over one another in a positive feedback loop that allows cells to overcome treatment with DS-7423. Concomitant targeting of PI3K/mTOR with either HER2 or mGluR1 inhibitors results in decreased cell survival and tumor growth in xenograft studies. Our results suggest a novel therapeutic possibility for patients with PTEN wild-type PI3K/AKT-mutant prostate cancer based in the combination of PI3K/mTOR blockade with HER2 or mGluR1 inhibitors.


Assuntos
Fosfatidilinositol 3-Quinases , Neoplasias da Próstata , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Inibidores de MTOR , Masculino , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Glutamato Metabotrópico , Serina-Treonina Quinases TOR/metabolismo
4.
Heliyon ; 7(7): e07581, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34355087

RESUMO

Pomalidomide (POM), a potent anticancer thalidomide analogue was characterized in terms of cyclodextrin complexation to improve its aqueous solubility and maintain its anti-angiogenic activity. The most promising cyclodextrin derivatives were selected by phase-solubility studies. From the investigated nine cyclodextrins - differing in cavity size, nature of substituents, degree of substitution and charge - the highest solubility increase was observed with sulfobutylether-ß-cyclodextrin (SBE-ß-CD). The inclusion complexation between POM and SBE-ß-CD was further characterized with a wide variety of state-of-the-art analytical techniques, such as nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR), circular dichroism spectroscopy, fluorescence spectroscopy as well as X-ray powder diffraction method (XRD). Job plot titration by NMR and the AL-type phase-solubility diagram indicated 1:1 stoichiometry in a liquid state. Complementary analytical methods were employed for the determination of the stability constant of the complex; the advantages and disadvantages of the different approaches are also discussed. Inclusion complex formation was also assessed by molecular modelling study. Solid state complexation in a 1:1 M ratio was carried out by lyophilization and investigated by IR and XRD. The complex exhibited fast-dissolution with immediate release of POM, when compared to the pure drug at acidic and neutral pH. Kinetic analysis of POM release from lyophilized complex shows that Korsmeyer-Peppas and Weibull model described the best the dissolution kinetics. The cytotoxicity of the complex was tested against the LP-1 human myeloma cell line which revealed that supramolecular interactions did not significantly affect the anti-cancer activity of the drug. Overall, our results suggest that the inclusion complexation of POM with SBE-ß-CD could be a promising approach for developing more effective POM formulations with increased solubility.

5.
Pathol Oncol Res ; 27: 620256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257586

RESUMO

Background: Anti-EGFR antibody therapy is still one of the clinical choices in head and neck squamous cell carcinoma (HNSCC) patients, but the emergence of cetuximab resistance questioned its effectiveness and reduced its applicability. Although several possible reasons of resistance against the antibody treatment and alternative therapeutic proposals have been described (EGFR alterations, activation of other signaling pathways), there is no method to predict the effectiveness of anti-EGFR antibody treatments and to suggest novel therapeutics. Our study investigated the effect of EGFR R521K alteration on efficiency of cetuximab therapy of HNSCC cell lines and tried to find alternative therapeutic approaches against the resistant cells. Methods: After genetic characterization of HNSCC cells, we chose one wild type and one R521K+ cell line for in vitro proliferation and apoptosis tests, and in vivo animal models using different therapeutic agents. Results: Although the cetuximab treatment affected EGFR signalization in both cells, it did not alter in vitro cell proliferation or apoptosis. In vivo cetuximab therapy was also ineffective on R521K harboring tumor xenografts, while blocked the tumor growth of EGFR-wild type xenografts. Interestingly, the cetuximab-resistant R521K tumors were successfully treated with c-MET tyrosine kinase inhibitor SU11274. Conclusion: Our results suggest that HNSCC cell line expressing the R521K mutant form of EGFR does not respond well to cetuximab treatment in vitro or in vivo, but hopefully might be targeted by c-MET tyrosine kinase inhibitor treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Mutação , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Apoptose , Proliferação de Células , Cetuximab/administração & dosagem , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/administração & dosagem , Feminino , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Indóis/administração & dosagem , Camundongos , Camundongos SCID , Piperazinas/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Sulfonamidas/administração & dosagem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Ácido Zoledrônico/administração & dosagem
7.
Sci Rep ; 10(1): 14174, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843660

RESUMO

Mitochondrial dysfunction and significant changes in metabolic pathways accompany cancer development and are responsible for maintaining the tumor microenvironment. Normal mitochondria can trigger intrinsic apoptosis by releasing cytochrome c into the cytosol. The survival of malignant cells highly depends on the suppression of this function. We validated that A250, a highly purified fraction of fermented wheat germ extract (FWGE), increases the carbon flux into the mitochondria, the expression of key elements of the Krebs cycle and oxidative phosphorylation (OXPHOS). The increased respiratory chain activity is related to the mitochondria's ability to release cytochrome c into the cytosol, which triggers the apoptotic cascade. The 68% tumor growth inhibitory effect observed in the murine melanoma study is related to this effect, as proteomic analysis validated similar changes in mitochondrial protein levels in the isolated tumor tissue samples. Blood count data indicated that this effect was not accompanied by general toxicity. This study is significant, as it shows that a highly concentrated form of FWGE is an effective agent that increases normal mitochondrial functionality. The lack of hepatotoxic and general toxic effects makes A250 an excellent candidate targeting mitochondria function in cancer therapy.


Assuntos
Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/farmacologia , Triticum/química , Efeito Warburg em Oncologia/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Carbono/metabolismo , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/efeitos dos fármacos , Citocromos c/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Fermentação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Melanoma Experimental/tratamento farmacológico , Metanol , Camundongos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Distribuição Aleatória , Solventes
8.
Eur J Med Chem ; 184: 111710, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31614258

RESUMO

Aberrant activation of FMS-like tyrosine receptor kinase 3 (FLT3) is implicated in the pathogenesis of acute myeloid leukemia (AML) in 20-30% of patients. In this study we identified a highly selective (phenylethenyl)quinazoline compound family as novel potent inhibitors of the FLT3-ITD and FLT3-D835Y kinases. Their prominent effects were confirmed by biochemical and cellular proliferation assays followed by mice xenograft studies. Our modelling experiments and the chemical structures of the compounds predict the possibility of covalent inhibition. The most effective compounds triggered apoptosis in FLT3-ITD AML cells but had either weak or no effect in FLT3-independent leukemic and non-leukemic cell lines. Our results strongly suggest that our compounds may become therapeutics in relapsing and refractory AML disease harboring various ITD and tyrosine kinase domain mutations, by their ability to overcome drug resistance.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Estrutura Molecular , Mutação , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
9.
Oncotarget ; 10(51): 5255-5266, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31523388

RESUMO

Targeted therapies against cancer types with more than one driver gene hold bright but elusive promise, since approved drugs are not available for all driver mutations and monotherapies often result in resistance. Targeting multiple driver genes in different pathways at the same time may provide an impact extensive enough to fight resistance. Our goal was to find synergistic drug combinations based on the availability of targeted drugs and their biological activity profiles and created an associated compound library based on driver gene-related protein targets. In this study, we would like to show that driver gene pattern based customized combination therapies are more effective than monotherapies on six cell lines and patient-derived primary cell cultures. We tested 55-102 drug combinations targeting driver genes and driver pathways for each cell line and found 25-85% of these combinations highly synergistic. Blocking 2-5 cancer pathways using only 2-3 targeted drugs was sufficient to reach high rates of tumor cell eradication at remarkably low concentrations. Our results demonstrate that the efficiency of cancer treatment may be significantly improved by combining drugs against multiple tumor specific drivers.

10.
Bioorg Med Chem Lett ; 28(19): 3265-3270, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30143423

RESUMO

Aurora kinases as regulators of cell division have become promising therapeutic targets recently. Here we report novel, low molecular weight benzothiophene-3-carboxamide derivatives designed and optimized for inhibiting Aurora kinases. The most effective compound 36 inhibits Aurora kinases in vitro in the nanomolar range and diminishes HCT 116 cell viability blocking cytokinesis and inducing apoptosis. According to western blot analysis, the lead molecule inhibits Aurora kinases equipotently to VX-680 (Tozasertib) and similarly synergizes with other targeted drugs.


Assuntos
Amidas/química , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase B/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Tiofenos/química , Células HCT116 , Humanos , Concentração Inibidora 50
11.
J Med Chem ; 61(14): 6277-6292, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29928803

RESUMO

The overexpression of AXL kinase has been described in many types of cancer. Due to its role in proliferation, survival, migration, and resistance, AXL represents a promising target in the treatment of the disease. In this study we present a novel compound family that successfully targets the AXL kinase. Through optimization and detailed SAR studies we developed low nanomolar inhibitors, and after further biological characterization we identified a potent AXL kinase inhibitor with favorable pharmacokinetic profile. The antitumor activity was determined in xenograft models, and the lead compounds reduced the tumor size by 40% with no observed toxicity as well as lung metastasis formation by 66% when compared to vehicle control.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Sulfonamidas/química , Sulfonamidas/farmacologia , Animais , Células CACO-2 , Humanos , Camundongos , Inibidores de Proteínas Quinases/farmacocinética , Relação Estrutura-Atividade , Sulfonamidas/farmacocinética , Distribuição Tecidual , Receptor Tirosina Quinase Axl , Benzenossulfonamidas
12.
Bioorg Med Chem Lett ; 28(14): 2391-2398, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29935772

RESUMO

Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Sunitinib, a multikinase inhibitor, was the first Fms-like tyrosine kinase 3 (FLT3) inhibitor clinically used against AML. Off-target effects are a major concern for multikinase inhibitors. As targeted delivery may reduce such undesired side effects, our goal was to develop novel amino acid substituted derivatives of sunitinib which are potent candidates to be used conjugated with antibodies and peptides. In the current paper we present the synthesis, physicochemical and in vitro characterization of sixty two Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutant kinase inhibitors, bearing amino acid moieties, fit to be conjugated with peptide-based delivery systems via their carboxyl group. We determined the solubility, pKa, CHI and LogP values of the compounds along with their inhibition potential against FLT3-ITD mutant kinase and on MV4-11 cell line. The ester derivatives of the compounds inhibit the growth of the MV4-11 leukemia cell line at submicromolar concentration.


Assuntos
Aminoácidos/farmacologia , Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Sunitinibe/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Aminoácidos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia Mieloide Aguda/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Solubilidade , Relação Estrutura-Atividade , Sunitinibe/síntese química , Sunitinibe/química , Sequências de Repetição em Tandem/efeitos dos fármacos , Tirosina Quinase 3 Semelhante a fms/metabolismo
13.
Bioorg Med Chem Lett ; 28(4): 769-773, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29329658

RESUMO

Cyclin-dependent kinases (CDKs) and Polo-like kinases (PLKs) play key role in the regulation of the cell cycle. The aim of our study was originally the further development of our recently discovered polo-like kinase 1 (PLK1) inhibitors. A series of new 2,4-disubstituted pyrimidine derivatives were synthesized around the original hit, but their PLK1 inhibitory activity was very poor. However the novel compounds showed nanomolar CDK9 inhibitory activity and very good antiproliferative effect on multiple myeloma cell lines (RPMI-8226).


Assuntos
Antineoplásicos/farmacologia , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Quinase 1 Polo-Like
14.
J Pharm Biomed Anal ; 150: 355-361, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29287262

RESUMO

Sunitinib is a non-selective tyrosine kinase inhibitor, but in its chemical structure there can be discovered certain features, which suggest the ability to bind to DNA. These elements are the planar aromatic system and the tertiary amine function, which is protonated at the pH of the organism. In this study, the binding of the drug sunitinib to DNA was investigated using circular dichroism (CD), 1H NMR and UV spectroscopies, along with CD melting. For these studies DNA was isolated from calf thymus (CT), salmon fish sperm (SS), and chicken erythrocyte (CE), however for our purposes an artificially constructed and highly purified plasmid DNA (pUC18) preparation proved to be the most suitable. DNA binding of the drug was confirmed by shifts in the characteristic CD bands of the DNA, the appearance of an induced CD (ICD) signal in the upper absorption region of sunitinib (300 nm-500 nm), and the evidence from CD melting studies and the NMR. Based on the CD and NMR measurements, it can be assumed that sunitinib has a multiple-step binding mechanism.


Assuntos
Antineoplásicos/química , Dicroísmo Circular , DNA/química , Indóis/química , Plasmídeos/química , Espectroscopia de Prótons por Ressonância Magnética , Pirróis/química , Sítios de Ligação , Ligantes , Conformação de Ácido Nucleico , Relação Estrutura-Atividade , Sunitinibe
15.
Cell Rep ; 20(12): 2833-2845, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930680

RESUMO

Kinase inhibitors represent the backbone of targeted cancer therapy, yet only a limited number of oncogenic drivers are directly druggable. By interrogating the activity of 1,505 kinase inhibitors, we found that BRD4-NUT-rearranged NUT midline carcinoma (NMC) cells are specifically killed by CDK9 inhibition (CDK9i) and depend on CDK9 and Cyclin-T1 expression. We show that CDK9i leads to robust induction of apoptosis and of markers of DNA damage response in NMC cells. While both CDK9i and bromodomain inhibition over time result in reduced Myc protein expression, only bromodomain inhibition induces cell differentiation and a p21-induced cell-cycle arrest in these cells. Finally, RNA-seq and ChIP-based analyses reveal a BRD4-NUT-specific CDK9i-induced perturbation of transcriptional elongation. Thus, our data provide a mechanistic basis for the genotype-dependent vulnerability of NMC cells to CDK9i that may be of relevance for the development of targeted therapies for NMC patients.


Assuntos
Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Ciclina T/metabolismo , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/metabolismo , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Neoplasias/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/química , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos
16.
Artigo em Inglês | MEDLINE | ID: mdl-28384606

RESUMO

High amount of the valuable lignan pinoresinol (PR) was determined in Carduus nutans fruit (7.8mg/g) for the first time. A preparative separation method using two consecutive, identical steps of centrifugal partition chromatography (CPC) was developed in order (i) to isolate PR and (ii) to subsequently isolate PR and its 7' epimer epipinoresinol (EPR) simultaneously after an optimized acid treatment which resulted in PR epimerization forming equal amounts of PR and EPR, from C. nutans fruit. As optimal conditions, a two-phase solvent system consisting of methyl tert-butyl ether:acetone:water (4:3:3, v/v/v) for CPC separation, and an acid treatment performed at 50°C for 30min for the epimerization were applied. Thus, 33.7mg and 32.8mg PR and EPR, in as high as 93.7% and 92.3% purity, were isolated from 10.0gC. nutans fruit, representing 86.4% and 84.1% efficiency, respectively. Conversion characteristic of PR and EPR in acidic medium, determined as a function of time and temperature of acid treatment provides their unambiguous identification by on-line high performance liquid chromatography (HPLC). Antiproliferative assay of isolated PR and EPR in two different types of colon cancer cell lines (HCT116 and SW480) confirmed that both epimers caused a more significant decrease of viability in HCT116 cells than in SW480 cells, suggesting their similar mechanism of antiproliferative action.


Assuntos
Antineoplásicos Fitogênicos/análise , Carduus/química , Cromatografia Líquida de Alta Pressão/métodos , Furanos/análise , Lignanas/análise , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Frutas/química , Furanos/isolamento & purificação , Furanos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Células HCT116 , Humanos , Lignanas/isolamento & purificação , Lignanas/farmacologia , Extratos Vegetais/química , Estereoisomerismo
17.
Life Sci ; 163: 46-54, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27558234

RESUMO

UNLABELLED: Ischemia/reperfusion and the resulting oxidative/nitrative stress impair cerebral myogenic tone via actin depolymerization. While it is known that NADPH oxidase (Nox) family is a major source of vascular oxidative stress; the extent and mechanisms by which Nox activation contributes to actin depolymerization, and equally important, the relative role of Nox isoforms in this response is not clear. AIM: To determine the role of Nox4 in hypoxia-mediated actin depolymerization and myogenic-tone impairment in cerebral vascular smooth muscle. MAIN METHODS: Control and Nox4 deficient (siRNA knock-down) human brain vascular smooth muscle cells (HBVSMC) were exposed to 30-min hypoxia/45-min reoxygenation. Nox2, Nox4, inducible and neuronal nitric oxide synthase (iNOS and nNOS) and nitrotyrosine levels as well as F:G actin were determined. Myogenic-tone was measured using pressurized arteriography in middle cerebral artery isolated from rats subjected to sham, 30-min ischemia/45-min reperfusion or ex-vivo oxygen glucose deprivation in the presence and absence of Nox inhibitors. RESULTS: Nox4 and iNOS expression were significantly upregulated following hypoxia or ischemia/reperfusion. Hypoxia augmented nitrotyrosine levels while reducing F actin. These effects were nullified by inhibiting nitration with epicatechin or pharmacological or molecular inhibition of Nox4. Ischemia/reperfusion impaired myogenic-tone, which was restored by the selective inhibition of Nox4. CONCLUSION: Nox4 activation in VSMCs contributes to actin depolymerization after hypoxia, which could be the underlying mechanism for myogenic-tone impairment following ischemia/reperfusion.


Assuntos
Citoesqueleto de Actina/metabolismo , Hipóxia/metabolismo , Músculo Liso Vascular/metabolismo , NADPH Oxidases/metabolismo , Actinas/metabolismo , Animais , Células Cultivadas , Humanos , Glicoproteínas de Membrana/metabolismo , Artéria Cerebral Média/fisiologia , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/biossíntese , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Traumatismo por Reperfusão/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Regulação para Cima
18.
J Biomol Screen ; 21(9): 912-22, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27412535

RESUMO

3D tissue cultures provide a more physiologically relevant context for the screening of compounds, compared with 2D cell cultures. Cells cultured in 3D hydrogels also show complex phenotypes, increasing the scope for phenotypic profiling. Here we describe a high-content screening platform that uses invasive human prostate cancer cells cultured in 3D in standard 384-well assay plates to study the activity of potential therapeutic small molecules and antibody biologics. Image analysis tools were developed to process 3D image data to measure over 800 phenotypic parameters. Multiparametric analysis was used to evaluate the effect of compounds on tissue morphology. We applied this screening platform to measure the activity and selectivity of inhibitors of the c-Met and epidermal growth factor (EGF) receptor (EGFR) tyrosine kinases in 3D cultured prostate carcinoma cells. c-Met and EGFR activity was quantified based on the phenotypic profiles induced by their respective ligands, hepatocyte growth factor and EGF. The screening method was applied to a novel collection of 80 putative inhibitors of c-Met and EGFR. Compounds were identified that induced phenotypic profiles indicative of selective inhibition of c-Met, EGFR, or bispecific inhibition of both targets. In conclusion, we describe a fully scalable high-content screening platform that uses phenotypic profiling to discriminate selective and nonselective (off-target) inhibitors in a physiologically relevant 3D cell culture setting.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Triagem em Larga Escala/métodos , Neoplasias da Próstata/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Humanos , Hidrogéis/química , Masculino , Neoplasias da Próstata/genética , Inibidores de Proteínas Quinases/isolamento & purificação , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Bibliotecas de Moléculas Pequenas/uso terapêutico
19.
Eur J Med Chem ; 108: 623-643, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26724730

RESUMO

Melanoma is an aggressive form of skin cancer and it is generally associated with poor prognosis in patients with late-stage disease. Due to the increasing occurrence of melanoma, there is a need for the development of novel therapies. A new series of diarylamide and diarylurea derivatives containing imidazo[1,2-a]pyridine or imidazo[1,2-a]pyrazine scaffold was designed and synthesized to investigate their in vitro efficacy against the A375P human melanoma cell line. We found several compounds expressing submicromolar IC50 values against the A375P cells, from which 15d, 17e, 18c, 18h, 18i demonstrated the highest potencies with IC50 below 0.06 µM.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Desenho de Fármacos , Imidazóis/farmacologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Pirazinas/farmacologia , Piridinas/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/síntese química , Imidazóis/química , Estrutura Molecular , Pirazinas/síntese química , Pirazinas/química , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
20.
Cancer Cell ; 28(2): 170-82, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26267534

RESUMO

Nearly 50% of human malignancies exhibit unregulated RAS-ERK signaling; inhibiting it is a valid strategy for antineoplastic intervention. Upon activation, ERK dimerize, which is essential for ERK extranuclear, but not for nuclear, signaling. Here, we describe a small molecule inhibitor for ERK dimerization that, without affecting ERK phosphorylation, forestalls tumorigenesis driven by RAS-ERK pathway oncogenes. This compound is unaffected by resistance mechanisms that hamper classical RAS-ERK pathway inhibitors. Thus, ERK dimerization inhibitors provide the proof of principle for two understudied concepts in cancer therapy: (1) the blockade of sub-localization-specific sub-signals, rather than total signals, as a means of impeding oncogenic RAS-ERK signaling and (2) targeting regulatory protein-protein interactions, rather than catalytic activities, as an approach for producing effective antitumor agents.


Assuntos
Carcinogênese/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Multimerização Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas ras/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Feminino , Células HEK293 , Humanos , Immunoblotting , Indóis/química , Indóis/metabolismo , Indóis/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA