Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 19(1): 147-156, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31582532

RESUMO

Receptor tyrosine kinase inhibitors have shown clinical benefit in clear cell renal cell carcinoma (ccRCC), but novel therapeutic strategies are needed. The angiopoietin/Tie2 and MET pathways have been implicated in tumor angiogenesis, metastases, and macrophage infiltration. In our study, we used trebananib, an angiopoietin 1/2 inhibitor, and a novel small-molecule MET kinase inhibitor in patient-derived xenograft (PDX) models of ccRCC. Our goal was to assess the ability of these compounds to alter the status of tumor-infiltrating macrophages, inhibit tumor growth and metastases, and prolong survival. Seven-week-old SCID mice were implanted subcutaneously or orthotopically with human ccRCC models. One month postimplantation, mice were treated with angiopoietin 1/2 inhibitor trebananib (AMG 386), MET kinase inhibitor, or combination. In our metastatic ccRCC PDX model, RP-R-02LM, trebananib alone, and in combination with a MET kinase inhibitor, significantly reduced lung metastases and M2 macrophage infiltration (P = 0.0075 and P = 0.0205, respectively). Survival studies revealed that treatment of the orthotopically implanted RP-R-02LM tumors yielded a significant increase in survival in both trebananib and combination groups. In addition, resection of the subcutaneously implanted primary tumor allowed for a significant survival advantage to the combination group compared with vehicle and both single-agent groups. Our results show that the combination of trebananib with a MET kinase inhibitor significantly inhibits the spread of metastases, reduces infiltrating M2-type macrophages, and prolongs survival in our highly metastatic ccRCC PDX model, suggesting a potential use for this combination therapy in treating patients with ccRCC.


Assuntos
Angiopoietina-2/genética , Carcinoma de Células Renais/genética , Animais , Carcinoma de Células Renais/mortalidade , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos SCID , Metástase Neoplásica , Análise de Sobrevida , Microambiente Tumoral
2.
Clin Cancer Res ; 24(24): 6383-6395, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30190370

RESUMO

PURPOSE: Diet and healthy weight are established means of reducing cancer incidence and mortality. However, the impact of diet modifications on the tumor microenvironment and antitumor immunity is not well defined. Immunosuppressive tumor-associated macrophages (TAMs) are associated with poor clinical outcomes and are potentially modifiable through dietary interventions. We tested the hypothesis that dietary protein restriction modifies macrophage function toward antitumor phenotypes. EXPERIMENTAL DESIGN: Macrophage functional status under different tissue culture conditions and in vivo was assessed by Western blot, immunofluorescence, qRT-PCR, and cytokine array analyses. Tumor growth in the context of protein or amino acid (AA) restriction and immunotherapy, namely, a survivin peptide-based vaccine or a PD-1 inhibitor, was examined in animal models of prostate (RP-B6Myc) and renal (RENCA) cell carcinoma. All tests were two-sided. RESULTS: Protein or AA-restricted macrophages exhibited enhanced tumoricidal, proinflammatory phenotypes, and in two syngeneic tumor models, protein or AA-restricted diets elicited reduced TAM infiltration, tumor growth, and increased response to immunotherapies. Further, we identified a distinct molecular mechanism by which AA-restriction reprograms macrophage function via a ROS/mTOR-centric cascade. CONCLUSIONS: Dietary protein restriction alters TAM activity and enhances the tumoricidal capacity of this critical innate immune cell type, providing the rationale for clinical testing of this supportive tool in patients receiving cancer immunotherapies.


Assuntos
Dieta com Restrição de Proteínas , Proteínas Alimentares/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Aminoácidos/metabolismo , Animais , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Microbioma Gastrointestinal , Humanos , Imunomodulação , Imunoterapia , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Neoplasias/patologia , Neoplasias/terapia , Poliaminas/metabolismo
3.
Clin Cancer Res ; 24(23): 5977-5989, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30061365

RESUMO

PURPOSE: Translocation renal cell carcinoma (tRCC) represents a rare subtype of kidney cancer associated with various TFE3, TFEB, or MITF gene fusions that are not responsive to standard treatments for RCC. Therefore, the identification of new therapeutic targets represents an unmet need for this disease. EXPERIMENTAL DESIGN: We have established and characterized a tRCC patient-derived xenograft, RP-R07, as a novel preclinical model for drug development by using next-generation sequencing and bioinformatics analysis. We then assessed the therapeutic potential of inhibiting the identified pathway using in vitro and in vivo models. RESULTS: The presence of a SFPQ-TFE3 fusion [t(X;1) (p11.2; p34)] with chromosomal break-points was identified by RNA-seq and validated by RT-PCR. TFE3 chromatin immunoprecipitation followed by deep sequencing analysis indicated a strong enrichment for the PI3K/AKT/mTOR pathway. Consistently, miRNA microarray analysis also identified PI3K/AKT/mTOR as a highly enriched pathway in RP-R07. Upregulation of PI3/AKT/mTOR pathway in additional TFE3-tRCC models was confirmed by significantly higher expression of phospho-S6 (P < 0.0001) and phospho-4EBP1 (P < 0.0001) in established tRCC cell lines compared with clear cell RCC cells. Simultaneous vertical targeting of both PI3K/AKT and mTOR axis provided a greater antiproliferative effect both in vitro (P < 0.0001) and in vivo (P < 0.01) compared with single-node inhibition. Knockdown of TFE3 in RP-R07 resulted in decreased expression of IRS-1 and inhibited cell proliferation. CONCLUSIONS: These results identify TFE3/IRS-1/PI3K/AKT/mTOR as a potential dysregulated pathway in TFE3-tRCC, and suggest a therapeutic potential of vertical inhibition of this axis by using a dual PI3K/mTOR inhibitor for patients with TFE3-tRCC.


Assuntos
Antineoplásicos/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/antagonistas & inibidores , Carcinoma de Células Renais/metabolismo , Proteínas Substratos do Receptor de Insulina/antagonistas & inibidores , Neoplasias Renais/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Serina-Treonina Quinases TOR/antagonistas & inibidores , Adulto , Animais , Antineoplásicos/uso terapêutico , Sítios de Ligação , Biomarcadores Tumorais , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Masculino , Camundongos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Res ; 78(11): 2886-2896, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29572225

RESUMO

Androgen receptor (AR) plays a crucial role in the development and progression of prostate cancer. AR expression has also been reported in other solid tumors, including renal cell carcinoma (RCC), but its biological role here remains unclear. Through integrative analysis of a reverse phase protein array, we discovered increased expression of AR in an RCC patient-derived xenograft model of acquired resistance to the receptor tyrosine kinase inhibitor (RTKi) sunitinib. AR expression was increased in RCC cell lines with either acquired or intrinsic sunitinib resistance in vitro An AR signaling gene array profiler indicated elevated levels of AR target genes in sunitinib-resistant cells. Sunitinib-induced AR transcriptional activity was associated with increased phosphorylation of serine 81 (pS81) on AR. Additionally, AR overexpression resulted in acquired sunitinib resistance and the AR antagonist enzalutamide-induced AR degradation and attenuated AR downstream activity in sunitinib-resistant cells, also indicated by decreased secretion of human kallikrein 2. Enzalutamide-induced AR degradation was rescued by either proteasome inhibition or by knockdown of the AR ubiquitin ligase speckle-type POZ protein (SPOP). In vivo treatment with enzalutamide and sunitinib demonstrated that this combination efficiently induced tumor regression in a RCC model following acquired sunitinib resistance. Overall, our results suggest the potential role of AR as a target for therapeutic interventions, in combination with RTKi, to overcome drug resistance in RCC.Significance: These findings highlight the therapeutic potential of targeting the androgen receptor to overcome RCC resistance to receptor tyrosine kinase inhibitors. Cancer Res; 78(11); 2886-96. ©2018 AACR.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Fosforilação/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Sunitinibe/farmacologia , Animais , Benzamidas , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Camundongos SCID , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Calicreínas Teciduais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
5.
Cancer Res ; 77(23): 6651-6666, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28978636

RESUMO

Acquired and intrinsic resistance to receptor tyrosine kinase inhibitors (RTKi) represents a major hurdle in improving the management of clear cell renal cell carcinoma (ccRCC). Recent reports suggest that drug resistance is driven by tumor adaptation via epigenetic mechanisms that activate alternative survival pathways. The histone methyl transferase EZH2 is frequently altered in many cancers, including ccRCC. To evaluate its role in ccRCC resistance to RTKi, we established and characterized a spontaneously metastatic, patient-derived xenograft model that is intrinsically resistant to the RTKi sunitinib, but not to the VEGF therapeutic antibody bevacizumab. Sunitinib maintained its antiangiogenic and antimetastatic activity but lost its direct antitumor effects due to kinome reprogramming, which resulted in suppression of proapoptotic and cell-cycle-regulatory target genes. Modulating EZH2 expression or activity suppressed phosphorylation of certain RTKs, restoring the antitumor effects of sunitinib in models of acquired or intrinsically resistant ccRCC. Overall, our results highlight EZH2 as a rational target for therapeutic intervention in sunitinib-resistant ccRCC as well as a predictive marker for RTKi response in this disease. Cancer Res; 77(23); 6651-66. ©2017 AACR.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Indóis/farmacologia , Neoplasias Renais/tratamento farmacológico , Pirróis/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Animais , Bevacizumab/farmacologia , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , Humanos , Neoplasias Renais/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCID , Neovascularização Patológica/tratamento farmacológico , Fosforilação , Receptores Proteína Tirosina Quinases/metabolismo , Sunitinibe , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Clin Cancer Res ; 23(23): 7199-7208, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939740

RESUMO

Purpose: On the basis of preclinical data suggesting that the class I selective HDAC inhibitor entinostat exerts a synergistic antitumor effect in combination with high-dose IL2 in a renal cell carcinoma model by downregulating Foxp3 expression and function of regulatory T cells (Treg), we conducted a phase I/II clinical study with entinostat and high-dose IL2 in patients with metastatic clear cell renal cell carcinoma (ccRCC).Experimental Design: Clear cell histology, no prior treatments, and being sufficiently fit to receive high-dose IL2 were the main eligibility criteria. The phase I portion consisted of two dose levels of entinostat (3 and 5 mg, orally every 14 days) and a fixed standard dose of IL2 (600,000 U/kg i.v.). Each cycle was 85 days. The primary endpoint was objective response rate and toxicity. Secondary endpoints included progression-free survival and overall survival.Results: Forty-seven patients were enrolled. At a median follow-up of 21.9 months, the objective response rate was 37% [95% confidence interval (CI), 22%-53%], the median progression-free survival was 13.8 months (95% CI, 6.0-18.8), and the median overall survival was 65.3 months (95% CI, 52.6.-65.3). The most common grade 3/4 toxicities were hypophosphatemia (16%), lymphopenia (15%), and hypocalcemia (7%), and all were transient. Decreased Tregs were observed following treatment with entinostat, and lower numbers were associated with response (P = 0.03).Conclusions: This trial suggests a promising clinical activity for entinostat in combination with high-dose IL2 in ccRCC patients and provides the first example of an epigenetic agent being rationally combined with immunotherapy. Clin Cancer Res; 23(23); 7199-208. ©2017 AACR.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Imunomodulação/efeitos dos fármacos , Neoplasias Renais/tratamento farmacológico , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Benzamidas/administração & dosagem , Benzamidas/efeitos adversos , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Hipofosfatemia/induzido quimicamente , Interleucina-2/administração & dosagem , Interleucina-2/efeitos adversos , Estimativa de Kaplan-Meier , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Linfopenia/induzido quimicamente , Masculino , Pessoa de Meia-Idade , Piridinas/administração & dosagem , Piridinas/efeitos adversos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
7.
Clin Cancer Res ; 23(17): 5187-5201, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28698201

RESUMO

PURPOSE: Recent advances in immunotherapy highlight the antitumor effects of immune checkpoint inhibition despite a relatively limited subset of patients receiving clinical benefit. The selective class I histone deacetylase inhibitor entinostat has been reported to have immunomodulatory activity including targeting of immune suppressor cells in the tumor microenvironment. Thus, we decided to assess whether entinostat could enhance anti-PD-1 treatment and investigate those alterations in the immunosuppressive tumor microenvironment that contribute to the combined antitumor activity. EXPERIMENTAL DESIGN: We utilized syngeneic mouse models of lung (LLC) and renal cell (RENCA) carcinoma and assessed immune correlates, tumor growth, and survival following treatment with entinostat (5 or 10 mg/kg, p.o.) and a PD-1 inhibitor (10 and 20 mg/kg, s.c.). RESULTS: Entinostat enhanced the antitumor effect of PD-1 inhibition in two syngeneic mouse tumor models by reducing tumor growth and increasing survival. Entinostat inhibited the immunosuppressive function of both polymorphonuclear (PMN)- and monocytic-myeloid derived suppressor cell (M-MDSC) populations. Analysis of MDSC response to entinostat revealed significantly reduced arginase-1, iNOS, and COX-2 levels, suggesting potential mechanisms for the altered function. We also observed significant alterations in cytokine/chemokine release in vivo with a shift toward a tumor-suppressive microenvironment. CONCLUSIONS: Our results demonstrate that entinostat enhances the antitumor effect of PD-1 targeting through functional inhibition of MDSCs and a transition away from an immune-suppressive tumor microenvironment. These data provide a mechanistic rationale for the clinical testing and potential markers of response of this novel combination in solid tumor patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma de Células Renais/tratamento farmacológico , Células Supressoras Mieloides/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Benzamidas/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Modelos Animais de Doenças , Inibidores de Histona Desacetilases/administração & dosagem , Humanos , Tolerância Imunológica/imunologia , Imunoterapia/métodos , Camundongos , Receptor de Morte Celular Programada 1/imunologia , Piridinas/administração & dosagem , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
8.
BMC Cancer ; 16: 617, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27506904

RESUMO

BACKGROUND: Class I histone deacetylases (HDACs) have been reported to be overexpressed in clear cell renal cell carcinoma (ccRCC), whereas the expression of class II HDACs is unknown. METHODS: Four isogenic cell lines C2/C2VHL and 786-O/786-OVHL with differential VHL expression are used in our studies. Cobalt chloride is used to mimic hypoxia in vitro. HIF-2α knockdowns in C2 and 786-O cells is used to evaluate the effect on HDAC 1 expression and activity. Invasion and migration assays are used to investigate the role of HDAC 1 and HDAC 6 expression in ccRCC cells. Comparisons are made between experimental groups using the paired T-test, the two-sample Student's T-test or one-way ANOVA, as appropriate. ccRCC and the TCGA dataset are used to observe the clinical correlation between HDAC 1 and HDAC 6 overexpression and overall and progression free survival. RESULTS: Our analysis of tumor and matched non-tumor tissues from radical nephrectomies showed overexpression of class I and II HDACs (HDAC6 only in a subset of patients). In vitro, both HDAC1 and HDAC6 over-expression increased cell invasion and motility, respectively, in ccRCC cells. HDAC1 regulated invasiveness by increasing matrix metalloproteinase (MMP) expression. Furthermore, hypoxia stimulation in VHL-reconstituted cell lines increased HIF isoforms and HDAC1 expression. Presence of hypoxia response elements in the HDAC1 promoter along with chromatin immunoprecipitation data suggests that HIF-2α is a transcriptional regulator of HDAC1 gene. Conversely, HDAC6 and estrogen receptor alpha (ERα) were co-localized in cytoplasm of ccRCC cells and HDAC6 enhanced cell motility by decreasing acetylated α-tubulin expression, and this biological effect was attenuated by either biochemical or pharmacological inhibition. Finally, analysis of human ccRCC specimens revealed positive correlation between HIF isoforms and HDAC. HDAC1 mRNA upregulation was associated with worse overall survival in the TCGA dataset. CONCLUSIONS: Taking together, these results suggest that HDAC1 and HDAC6 may play a role in ccRCC biology and could represent rational therapeutic targets.


Assuntos
Carcinoma de Células Renais/patologia , Histona Desacetilase 1/metabolismo , Histona Desacetilases/metabolismo , Neoplasias Renais/patologia , Western Blotting , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/mortalidade , Linhagem Celular Tumoral , Movimento Celular , Imunoprecipitação da Cromatina , Intervalo Livre de Doença , Citometria de Fluxo , Imunofluorescência , Técnicas de Silenciamento de Genes , Desacetilase 6 de Histona , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Neoplasias Renais/metabolismo , Neoplasias Renais/mortalidade , Invasividade Neoplásica/patologia , Análise Serial de Tecidos
9.
Epigenomics ; 8(3): 415-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26950532

RESUMO

HDAC inhibitors (HDACIs) are anticancer agents being developed in preclinical and clinical settings due to their capacity to modulate gene expression involved in cell growth, differentiation and apoptosis, through modification of both chromatin histone and nonhistone proteins. Most HDACIs in clinical development have cytotoxic or cytostatic properties and their direct inhibitory effects on tumor cells are well documented. Numerous studies have revealed that HDACIs have potent immunomodulatory activity in tumor-bearing animals and cancer patients, providing guidance to apply these agents in cancer immunotherapies. Here, we summarize recent reports addressing the effects of HDACIs on tumor cell immunogenicity, and on different components of the host immune system. In addition, we discuss the complexity of the immunomodulatory activity of these agents, which depends on the class specificity of the HDACIs, different experimental settings and the target immune cell populations.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Fatores Imunológicos/farmacologia , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Vacinas Anticâncer/farmacologia , Humanos , Linfócitos/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Linfócitos T Reguladores/efeitos dos fármacos
10.
Cancer Immunol Res ; 3(2): 136-48, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25370534

RESUMO

A major barrier for cancer immunotherapy is the presence of suppressive cell populations in patients with cancer, such as myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM), which contribute to the immunosuppressive microenvironment that promotes tumor growth and metastasis. Tasquinimod is a novel antitumor agent that is currently at an advanced stage of clinical development for treatment of castration-resistant prostate cancer. A target of tasquinimod is the inflammatory protein S100A9, which has been demonstrated to affect the accumulation and function of tumor-suppressive myeloid cells. Here, we report that tasquinimod provided a significant enhancement to the antitumor effects of two different immunotherapeutics in mouse models of cancer: a tumor vaccine (SurVaxM) for prostate cancer and a tumor-targeted superantigen (TTS) for melanoma. In the combination strategies, tasquinimod inhibited distinct MDSC populations and TAMs of the M2-polarized phenotype (CD206(+)). CD11b(+) myeloid cells isolated from tumors of treated mice expressed lower levels of arginase-1 and higher levels of inducible nitric oxide synthase (iNOS), and were less immunosuppressive ex vivo, which translated into a significantly reduced tumor-promoting capacity in vivo when these cells were coinjected with tumor cells. Tumor-specific CD8(+) T cells were increased markedly in the circulation and in tumors. Furthermore, T-cell effector functions, including cell-mediated cytotoxicity and IFNγ production, were potentiated. Taken together, these data suggest that pharmacologic targeting of suppressive myeloid cells by tasquinimod induces therapeutic benefit and provide the rationale for clinical testing of tasquinimod in combination with cancer immunotherapies.


Assuntos
Antineoplásicos/uso terapêutico , Imunoterapia/métodos , Melanoma Experimental/terapia , Neoplasias da Próstata/terapia , Quinolinas/uso terapêutico , Animais , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/uso terapêutico , Castração , Terapia Combinada , Avaliação Pré-Clínica de Medicamentos/métodos , Tolerância Imunológica/efeitos dos fármacos , Masculino , Melanoma Experimental/imunologia , Camundongos Endogâmicos C57BL , Células Mieloides/imunologia , Transplante de Neoplasias , Neoplasias da Próstata/imunologia , Quinolonas , Subpopulações de Linfócitos T/imunologia
11.
Mol Cancer Ther ; 14(2): 513-22, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25519701

RESUMO

Sunitinib is considered a first-line therapeutic option for patients with advanced clear cell renal cell carcinoma (ccRCC). Despite sunitinib's clinical efficacy, patients eventually develop drug resistance and disease progression. Herein, we tested the hypothesis whether initial sunitinib resistance may be transient and could be overcome by dose increase. In selected patients initially treated with 50 mg sunitinib and presenting with minimal toxicities, sunitinib dose was escalated to 62.5 mg and/or 75 mg at the time of tumor progression. Mice bearing two different patient-derived ccRCC xenografts (PDX) were treated 5 days per week with a dose-escalation schema (40-60-80 mg/kg sunitinib). Tumor tissues were collected before dose increments for immunohistochemistry analyses and drug levels. Selected intrapatient sunitinib dose escalation was safe and several patients had added progression-free survival. In parallel, our preclinical results showed that PDXs, although initially responsive to sunitinib at 40 mg/kg, eventually developed resistance. When the dose was incrementally increased, again we observed tumor response to sunitinib. A resistant phenotype was associated with transient increase of tumor vasculature despite intratumor sunitinib accumulation at higher dose. In addition, we observed associated changes in the expression of the methyltransferase EZH2 and histone marks at the time of resistance. Furthermore, specific EZH2 inhibition resulted in increased in vitro antitumor effect of sunitinib. Overall, our results suggest that initial sunitinib-induced resistance may be overcome, in part, by increasing the dose, and highlight the potential role of epigenetic changes associated with sunitinib resistance that can represent new targets for therapeutic intervention.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Indóis/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Pirróis/uso terapêutico , Animais , Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Indóis/sangue , Indóis/farmacologia , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/patologia , Camundongos SCID , Microvasos/efeitos dos fármacos , Microvasos/patologia , Complexo Repressor Polycomb 2/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirróis/sangue , Pirróis/farmacologia , Sunitinibe , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Biol Chem ; 289(34): 23693-700, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25023289

RESUMO

The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. Pivotal effectors of this pathway are YAP/TAZ, transcriptional co-activators whose dysfunction contributes to epithelial-to-mesenchymal transition and malignant transformation. Therefore, it is of great importance to decipher the mechanisms underlying the regulations of YAP/TAZ at various levels. Here we report that non-receptor tyrosine phosphatase 14 (PTPN14) interacts with the Kibra protein. The interaction between PTPN14 and Kibra is through the PPXY domain of PTPN14 and WW domain of Kibra. PTPN14 and Kibra can induce the LATS1 activation independently and cooperatively. Interestingly, activation of LATS1 by PTPN14 is dependent on the C terminus of PTPN14 and independent of the upstream mammalian STE20-like kinase (MST) proteins. Furthermore, we demonstrate that PTPN14 increases the LAST1 protein stability. Last, overexpression of Kibra rescues the increased cell migration and aberrant three-dimensional morphogenesis induced by knockdown of PTPN14, and this rescue is mediated through the activation of the upstream LATS1 kinase and subsequent cytoplasmic sequestration of YAP. In summary, our results indicate a potential regulatory role of PTPN14 in the Hippo pathway and demonstrate another layer of regulation in the YAP oncogenic function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Sequência de Bases , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Microscopia de Fluorescência , Ligação Proteica , Proteínas Tirosina Fosfatases não Receptoras/genética , Interferência de RNA , Fatores de Transcrição , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA