RESUMO
Adaptor proteins play essential roles in various intracellular signaling pathways. Signal-transducing adaptor protein-2 (STAP-2) is an adaptor protein that possesses pleckstrin homology (PH) and Src homology 2 (SH2) domains, as well as a YXXQ signal transducer and activator of transcription 3 (STAT3)-binding motif in its C-terminal region. STAP-2 is also a substrate of breast tumor kinase (BRK). STAP-2/BRK expression is deregulated in breast cancers and enhances STAT3-dependent cell proliferation. In prostate cancer cells, STAP-2 interacts with and stabilizes epidermal growth factor receptor (EGFR) after stimulation, resulting in the upregulation of EGFR signaling, which contributes to cancer-cell proliferation and tumor progression. Therefore, inhibition of the interaction between STAP-2 and BRK/EGFR may be a possible therapeutic strategy for these cancers. For this purpose, peptides that interfere with STAP-2/BRK/EGFR binding may have great potential. Indeed, the identified peptide inhibitor successfully suppressed the STAP-2/EGFR protein interaction, EGFR stabilization, and cancer-cell growth. Furthermore, the peptide inhibitor suppressed tumor formation in human prostate- and lung-cancer cell lines in a murine xenograft model. This review focuses on the inhibitory peptide as a promising candidate for the treatment of prostate and lung cancers.
RESUMO
Signal-transducing adaptor family member-2 (STAP-2) is an adaptor protein that regulates various intracellular signals. We previously demonstrated that STAP-2 binds to epidermal growth factor receptor (EGFR) and facilitates its stability and activation of EGFR signaling in prostate cancer cells. Inhibition of this interaction may be a promising direction for cancer treatment. Here, we found that 2D5 peptide, a STAP-2-derived peptide, blocked STAP-2-EGFR interactions and suppressed EGFR-mediated proliferation in several cancer cell lines. 2D5 peptide inhibited tumor growth of human prostate cancer cell line DU145 and human lung cancer cell line A549 in murine xenograft models. Additionally, we determined that EGFR signaling and its stability were decreased by 2D5 peptide treatment during EGF stimulation. In conclusion, our study shows that 2D5 peptide is a novel anticancer peptide that inhibits STAP-2-mediated activation of EGFR signaling and suppresses prostate and lung cancer progression.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias Pulmonares , Peptídeos , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias da Próstata/metabolismo , Transdução de Sinais , Células A549 , Linhagem Celular Tumoral , Peptídeos/farmacologiaRESUMO
Since the time of Rudolf Virchow in the 19th century, it has been well-known that cancer-associated inflammation contributes to tumor initiation and progression. However, it remains unclear whether a collapse of the balance between the antitumor immune response via the immunological surveillance system and protumor immunity due to cancer-related inflammation is responsible for cancer malignancy. The majority of inflammatory signals affect tumorigenesis by activating signal transducer and activation of transcription 3 (STAT3) and nuclear factor-κB. Persistent STAT3 activation in malignant cancer cells mediates extremely widespread functions, including cell growth, survival, angiogenesis, and invasion and contributes to an increase in inflammation-associated tumorigenesis. In addition, intracellular STAT3 activation in immune cells causes suppressive effects on antitumor immunity and leads to the differentiation and mobilization of immature myeloid-derived cells and tumor-associated macrophages. In many cancer types, STAT3 does not directly rely on its activation by oncogenic mutations but has important oncogenic and malignant transformation-associated functions in both cancer and stromal cells in the tumor microenvironment (TME). We have reported a series of studies aiming towards understanding the molecular mechanisms underlying the proliferation of various types of tumors involving signal-transducing adaptor protein-2 as an adaptor molecule that modulates STAT3 activity, and we recently found that AT-rich interactive domain-containing protein 5a functions as an mRNA stabilizer that orchestrates an immunosuppressive TME in malignant mesenchymal tumors. In this review, we summarize recent advances in our understanding of the functional role of STAT3 in tumor progression and introduce novel molecular mechanisms of cancer development and malignant transformation involving STAT3 activation that we have identified to date. Finally, we discuss potential therapeutic strategies for cancer that target the signaling pathway to augment STAT3 activity.
Assuntos
Neoplasias , Fator de Transcrição STAT3 , Carcinogênese/patologia , Transformação Celular Neoplásica/genética , Humanos , Inflamação/patologia , Monitorização Imunológica , Neoplasias/metabolismo , Fator de Transcrição STAT3/metabolismo , Microambiente TumoralRESUMO
Immune system is a complex network that clears pathogens, toxic substrates, and cancer cells. Distinguishing self-antigens from non-self-antigens is critical for the immune cell-mediated response against foreign antigens. The innate immune system elicits an early-phase response to various stimuli, whereas the adaptive immune response is tailored to previously encountered antigens. During immune responses, B cells differentiate into antibody-secreting cells, while naïve T cells differentiate into functionally specific effector cells [T helper 1 (Th1), Th2, Th17, and regulatory T cells]. However, enhanced or prolonged immune responses can result in autoimmune disorders, which are characterized by lymphocyte-mediated immune responses against self-antigens. Signal transduction of cytokines, which regulate the inflammatory cascades, is dependent on the members of the Janus family of protein kinases. Tyrosine kinase 2 (Tyk2) is associated with receptor subunits of immune-related cytokines, such as type I interferon, interleukin (IL)-6, IL-10, IL-12, and IL-23. Clinical studies on the therapeutic effects and the underlying mechanisms of Tyk2 inhibitors in autoimmune or chronic inflammatory diseases are currently ongoing. This review summarizes the findings of studies examining the role of Tyk2 in immune and/or inflammatory responses using Tyk2-deficient cells and mice.
RESUMO
Inflammatory and immune signals are involved in stressed hematopoiesis under myeloablation, infection, chronic inflammation, and aging. These signals also affect malignant pathogenesis, and the dysregulated immune environment which causes the resistance to treatment. On activation, various types of protein tyrosine kinases in the cytoplasm mediate the cascade, leading to the transcription of target genes in the nucleus. Adaptor molecules are commonly defined as proteins that lack enzymatic activity, DNA-binding or receptor functions and possess protein-protein or protein-lipid interaction domains. By binding to specific domains of signaling molecules, adaptor proteins adjust the signaling responses after the ligation of receptors of soluble factors, including cytokines, chemokines, and growth factors, as well as pattern recognition receptors such as toll-like receptors. The signal-transducing adaptor protein (STAP) family regulates various intracellular signaling pathways. These proteins have a pleckstrin homology domain in the N-terminal region and an SRC-homology 2-like domain in the central region, representing typical binding structures as adapter proteins. Following the elucidation of the effects of STAPs on terminally differentiated immune cells, such as macrophages, T cells, mast cells, and basophils, recent findings have indicated the critical roles of STAP-2 in B-cell progenitor cells in marrow under hematopoietic stress and STAP-1 and -2 in BCR-ABL-transduced leukemogenesis. In this review, we focus on the role of STAPs in the bone marrow.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Hematológicas/metabolismo , Hematopoese , Fosfoproteínas/metabolismo , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Neoplasias Hematológicas/patologia , Humanos , Transdução de SinaisRESUMO
The signal-transducing adaptor protein (STAP) family, including STAP-1 and STAP-2, contributes to a variety of intracellular signaling pathways. The proteins in this family contain typical structures for adaptor proteins, such as Pleckstrin homology in the N-terminal regions and SRC homology 2 domains in the central regions. STAP proteins bind to inhibitor of kappaB kinase complex, breast tumor kinase, signal transducer and activator of transcription 3 (STAT3), and STAT5, during tumorigenesis and inflammatory/immune responses. STAP proteins positively or negatively regulate critical steps in intracellular signaling pathways through individually unique mechanisms. This article reviews the roles of the novel STAP family and the possible therapeutic applications of targeting STAP proteins in cancer.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/metabolismo , Neoplasias/metabolismo , Animais , Proteínas Sanguíneas/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Tirosina/metabolismoRESUMO
Signal-transducing adaptor protein-2 (STAP-2) is an adaptor protein involved in inflammatory and immune responses, such as inflammatory bowel disease and allergic responses. In this study, we investigated the role of STAP-2 in the pathogenesis of autoimmune hepatitis. After intravenous injection of concanavalin A (ConA), STAP-2 knock out (KO) mice showed more severe liver necrosis along with substantial lymphocyte infiltration compared to wild type (WT) mice. Serum alanine aminotransferase levels were significantly higher in ConA-injected STAP-2 KO mice than in WT mice. Levels of interferon-γ (IFN-γ), an important factor for liver necrosis, were also significantly increased in sera of STAP-2 KO mice compared to WT mice after ConA injection. Statistically significant upregulation of Fas ligand (FasL) expression was observed in the livers of ConA-injected STAP-2 KO mice compared to WT mice. In accordance with these results, apoptotic signals were facilitated in STAP-2 KO mice compared to WT mice after ConA injection. Correctively, these results suggest that STAP-2 is involved in the pathogenesis of autoimmune hepatitis by regulating the expression of FasL and the production of IFN-γ.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Ligante Fas/metabolismo , Hepatite Autoimune/metabolismo , Interferon gama/metabolismo , Fígado/patologia , Animais , Apoptose , Caspase 3/metabolismo , Concanavalina A , Modelos Animais de Doenças , Feminino , Fígado/metabolismo , Linfócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose , Transdução de Sinais , Regulação para CimaRESUMO
Tyrosine kinase 2 (Tyk2) is a member of the Janus family of protein tyrosine kinases (Jaks). Tyk2 associates with interferon (IFN)-α, IFN-ß, interleukin (IL)-6, IL-10, IL-12, and IL-23 receptors and mediates their downstream signaling pathways. Based on our data using Tyk2-deficient mice and cells, Tyk2 plays crucial roles in the differentiation, maintenance, and function of T helper 1 (Th1) and Th17 cells, and its dysregulation may promote autoimmune and/or inflammatory diseases. IFN-α-induced growth inhibition of B lymphocyte progenitors is dependent on Tyk2-mediated signals to regulate death-associated protein (Daxx) nuclear localization and Daxx-promyelocytic leukemia protein interactions. Tyk2-deficient mice show impaired constitutive production of type I IFNs by macrophages under steady-state conditions. When heat-killed Cutibacterium acnes is injected intraperitoneally, Tyk2-deficient mice show less granuloma formation through enhanced prostaglandin E2 and protein kinase A activities, leading to high IL-10 production by macrophages. Thus, Tyk2 is widely involved in the immune and inflammatory response at multiple events; therefore, Tyk2 is likely to be a suitable target for treating patients with autoimmune and/or chronic inflammatory diseases. Clinical trials of Tyk2 inhibitors have shown higher response rates and improved tolerability in the treatment of patients with psoriasis and inflammatory bowel diseases. Taken together, Tyk2 inhibition has great potential for clinical application in the management of a variety of diseases.
Assuntos
Doenças Autoimunes/tratamento farmacológico , Inflamação/tratamento farmacológico , TYK2 Quinase/antagonistas & inibidores , Animais , Doenças Autoimunes/enzimologia , Doença Crônica , Humanos , Inflamação/enzimologiaRESUMO
Signal-transducing adaptor protein (STAP)-2 is an adaptor molecule involved in regulation of several intracellular signaling events in immune cells. STAP-2 contains a pleckstrin homology domain at the N-terminus, an src homology domain in the central portion and a proline-rich region at the C-terminus. STAP-2 also has a YXXQ motif, which is a potential signal transducer and activator of transcription (STAT)3-binding site. STAP-2 influences the STAT3 and STAT5 activity, integrin-mediated T cell adhesion, chemokine-induced T cell migration, Fas-mediated T cell apoptosis, Toll-like receptor-mediated macrophage functions, macrophage colony-stimulating factor-induced macrophage activation, and the high-affinity immunoglobulin E receptor-mediated mast cell activation. This article reviews the current understanding of roles of the STAP-2 during immune and/or inflammatory responses, and discusses possible therapeutic applications of targeting STAP-2 proteins in immune-related disorders.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Macrófagos/imunologia , Mastócitos/imunologia , Fosfoproteínas/imunologia , Linfócitos T/imunologia , Animais , Humanos , Inflamação/imunologiaRESUMO
Chronic myeloid leukemia (CML) is a clonal disease characterized by the presence of the Philadelphia chromosome and its oncogenic product, BCR-ABL, which activates multiple pathways involved in cell survival, growth promotion, and disease progression. We recently reported that signal-transducing adaptor protein 1 (STAP-1) is upregulated in CML stem cells (LSCs) and functions to reduce the apoptosis of CML LSCs by upregulating the STAT5-downstream anti-apoptotic genes. In this study, we demonstrate the detailed molecular interactions among BCR-ABL, STAP-1, and signal transducer and activator of transcription 5 (STAT5). Studies with deletion mutants have revealed that STAP-1 interacts with BCR-ABL and STAT5a through its SH2 and PH domains, respectively, suggesting the possible role of STAP-1 as a scaffold protein. Furthermore, the binding of STAP-1 to BCR-ABL stabilizes the BCR-ABL protein in CML cells. Since STAP-1 is highly expressed in CML cells, we also analyzed the STAP-1 promoter activity using a luciferase reporter construct and found that NFATc1 is involved in activating the STAP-1 promoter and inducing STAP-1 mRNA expression. Our results demonstrate that STAP-1 contributes to the BCR-ABL/STAT5 and BCR-ABL/Ca2+/NFAT signals to induce proliferation and STAP-1 mRNA expression in CML cells, respectively.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Proteínas de Fusão bcr-abl/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Transcrição NFATC/metabolismo , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
Post-transplant lymphoproliferative disorder (PTLD) is a life-threatening complication of transplantation. In addition to reactivation of Epstein-Barr virus in immunocompromised patients, impaired tumor immunity is suggested to be a risk factor for PTLD. However, it remains unclear whether immune suppressive tumor-infiltrating lymphocytes (TILs) correlate with the occurrence or prognosis of PTLD. We analyzed TILs in 26 patients with PTLD to elucidate the clinicopathological significance of the expression of PD-1 and FoxP3, which are associated with exhausted T-cells and regulatory T-cells (Tregs), respectively. Numbers of PD-1+ TILs in the PTLD specimens were significantly higher in patients who developed PTLD early after transplantation (P = 0.0040), while numbers of FoxP3+ TILs were not (P = 0.184). There was no difference in overall response rate regardless of the expression of PD-1 or FoxP3. FoxP3high patients tended to have a shorter time to progression compared with FoxP3low patients, especially in the case of FoxP3high patients with diffuse large B-cell lymphoma-subtype PTLD (P = 0.011), while PD-1high patients did not. These results suggest that T-cell exhaustion may be mainly associated with PTLD development, while immune suppression by Tregs may be dominant in enhanced progression of PTLD following disease occurrence.
Assuntos
Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Linfócitos do Interstício Tumoral/patologia , Transtornos Linfoproliferativos/etiologia , Transplante de Órgãos/efeitos adversos , Receptor de Morte Celular Programada 1/análise , Adulto , Idoso , Feminino , Fatores de Transcrição Forkhead/análise , Humanos , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/terapia , Transtornos Linfoproliferativos/patologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto JovemRESUMO
CD47, a 50 kDa transmembrane protein, facilitates integrin-mediated cell adhesion and inhibits cell engulfment by phagocytes. Since CD47 blocking promotes engulfment of cancer cells by macrophages, it is important to clarify the mechanism of CD47 signaling in order to develop treatments for diseases involving CD47-overexpressing cancer cells, including breast cancer and lymphoma. Here, we show that CD47 plays an essential role in T-cell lymphoma metastasis by up-regulating basal RhoA activity independent of its anti-phagocytic function. CD47 interacts with AKAP13, a RhoA-specific guanine nucleotide exchange factor (GEF), and facilitates AKAP13-mediated RhoA activation. Our study shows that CD47 has a novel function on the AKAP13-RhoA axis and suggests that CD47-AKAP13 interaction would be a novel target for T-cell lymphoma treatment.
Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Antígeno CD47/metabolismo , Linfoma de Células T/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Metástase Neoplásica/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Linfoma de Células T/patologia , Macrófagos/metabolismo , Fagocitose , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologiaRESUMO
Graft-versus-host disease (GVHD) is the most frequent complication after allogeneic hematopoietic stem cell transplantation (HSCT), and is one of the major causes of non-relapse mortality. Transferred mature lymphocytes are thought to be responsible for GVHD based on the findings that mice transplanted with lymphocyte-depleted bone marrow (BM) cells from MHC-mismatched donors do not develop GVHD. However, we found that overexpression of signal-transducing adaptor protein (STAP)-2 in lymphoid cells could induce GVHD after lymphocyte-depleted BM transplantation. To examine the function of STAP-2, which has been shown to play an important role in development and function of lymphocytes, in GVHD, we transplanted BM cells from STAP-2 deficient, or Lck promoter/IgH enhancer-driven STAP-2 transgenic (Tg) mice into MHC-mismatched recipients. Unexpectedly, mice transplanted with lymphocyte-depleted BM cells from STAP-2 Tg mice developed severe acute GVHD with extensive colitis and atrophy of thymus, while no obvious GVHD developed in mice transplanted with the wild type or STAP-2 deficient graft. Furthermore, mice transplanted with lymphocyte-depleted BM cells from the syngeneic STAP-2 Tg mice developed modest GVHD with colitis and atrophy of thymus. These results suggest that STAP-2 overexpression may enhance survival of allo-, and even auto-, reactive lymphocytes derived from engrafted hematopoietic progenitor cells in lethally irradiated mice, and that clarification of the mechanism may help understanding induction of immune tolerance after HSCT.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células da Medula Óssea/imunologia , Transplante de Medula Óssea , Doença Enxerto-Hospedeiro/imunologia , Depleção Linfocítica , Doença Aguda , Animais , Contagem de Linfócitos , Complexo Principal de Histocompatibilidade , Camundongos Transgênicos , Linfócitos T Reguladores/imunologia , Transplante HomólogoRESUMO
Adult T-cell leukemia/lymphoma (ATLL) patients have an extremely poor prognosis, partly due to their immunosuppressive state. The majority of ATLL patients have leukemic cells with phenotype similar to Tregs, prompting suggestions that ATLL cells themselves have immunosuppressive functions. In this study, we detected CD39 expression on ATLL cells, particularly frequent on aggressive subtypes. CD39 and CD73 convert extracellular adenosine triphosphate (ATP) into adenosine, a key player in Tregs' immunosuppression. In vitro culture, both CD39+ ATLL cells and normal Tregs converted rapidly extracellular ATP to AMP, which was disturbed by CD39 inhibitors, and was negated in the CD39 knockout MJ cell line. The proliferation of cocultured CD4+/CD8+ normal T cells was suppressed by CD39+ MJ cells, but not by CD39 knockout MJ cells. Supplemented ATP was exhausted by an EG7-OVA T-cell line with stable CD39 induction, but not by mock. When these cell lines were subcutaneously transplanted into murine flanks, Poly(I:C) peritoneal administration reduced tumor size to 1/3 in mock-transplanted tumors, but not in CD39 induced tumors. Overall, we found that ATLL cells express CD39 at a high rate, and our results suggest that this helps ATLL cells escape antitumor immunity through the extracellular ATPDase-Adenosine cascade. These findings will guide future clinical strategies for ATLL treatment.
Assuntos
Antígenos CD/genética , Apirase/genética , Regulação Leucêmica da Expressão Gênica , Tolerância Imunológica/genética , Imunomodulação/genética , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunofenotipagem , Leucemia-Linfoma de Células T do Adulto/diagnóstico , Leucemia-Linfoma de Células T do Adulto/metabolismo , Camundongos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologiaRESUMO
Signal-transducing adaptor protein-2 (STAP-2) was discovered as a C-FMS/M-CSFR interacting protein and subsequently found to function as an adaptor of signaling or transcription factors. These include STAT5, MyD88 and IκB kinase in macrophages, mast cells, and T cells. There is additional information about roles for STAP-2 in several types of malignant diseases including chronic myeloid leukemia, however, none have been reported concerning B lineage lymphocytes. We have now exploited gene targeted and transgenic mice to address this lack of knowledge, and demonstrated that STAP-2 is not required under normal, steady-state conditions. However, recovery of B cells following transplantation was augmented in the absence of STAP-2. This appeared to be restricted to cells of B cell lineage with myeloid rebound noted as unremarkable. Furthermore, all hematological parameters were observed to be normal once recovery from transplantation was complete. Furthermore, overexpression of STAP-2, specifically in lymphoid cells, resulted in reduced numbers of late-stage B cell progenitors within the bone marrow. While numbers of mature peripheral B and T cells were unaffected, recovery from sub-lethal irradiation or transplantation was dramatically reduced. Lipopolysaccharide (LPS) normally suppresses B precursor expansion in response to interleukin 7, however, STAP-2 deficiency made these cells more resistant. Preliminary RNA-Seq analyses indicated multiple signaling pathways in B progenitors as STAP-2-dependent. These findings suggest that STAP-2 modulates formation of B lymphocytes in demand conditions. Further study of this adapter protein could reveal ways to speed recovery of humoral immunity following chemotherapy or transplantation.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transplante de Células-Tronco Hematopoéticas , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linfócitos B/metabolismo , Macrófagos/metabolismo , Camundongos , Transdução de SinaisRESUMO
Mutated receptor tyrosine kinases (MT-RTKs) such as internal tandem duplication of FMS-like tyrosine kinase 3 (FLT3 ITD) and a point mutation KIT D816V are driver mutations for acute myeloid leukemia (AML). Clathrin assembly lymphoid myeloid leukemia protein (CALM) regulates intracellular transport of RTKs, however, the precise role for MT-RTKs remains elusive. We here show that CALM knock down leads to severely impaired FLT3 ITD- or KIT D814V-dependent cell growth compared to marginal influence on wild-type FLT3- or KIT-mediated cell growth. An antipsychotic drug chlorpromazine (CPZ) suppresses the growth of primary AML samples, and human CD34+CD38- AML cells including AML initiating cells with MT-RTKs in vitro and in vivo. Mechanistically, CPZ reduces CALM protein at post transcriptional level and perturbs the intracellular localization of MT-RTKs, thereby blocking their signaling. Our study presents a therapeutic strategy for AML with MT-RTKs by altering the intracellular localization of MT-RTKs using CPZ.
Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Clorpromazina/farmacologia , Leucemia Mieloide Aguda/genética , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Feminino , Células HL-60 , Humanos , Leucemia Mieloide Aguda/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Proteínas Monoméricas de Montagem de Clatrina/genética , Mutação Puntual , Transdução de Sinais/efeitos dos fármacos , Sequências de Repetição em Tandem/genética , Transplante Heterólogo , Adulto JovemRESUMO
The family of signal-transducing adapter proteins (STAPs) has been reported to be involved in a variety of intracellular signaling pathways and implicated as transcriptional factors. We previously cloned STAP-2 as a c-Fms interacting protein and explored its effects on chronic myeloid leukemia (CML) leukemogenesis. STAP-2 binds to BCR-ABL, upregulates BCR-ABL phosphorylation, and activates its downstream molecules. In this study, we evaluated the role of STAP-1, another member of the STAP family, in CML pathogenesis. We found that the expression of STAP-1 is aberrantly upregulated in CML stem cells (LSCs) in patients' bone marrow. Using experimental model mice, deletion of STAP-1 prolonged the survival of CML mice with inducing apoptosis of LSCs. The impaired phosphorylation status of STAT5 by STAP-1 ablation leads to downregulation of antiapoptotic genes, Bcl-2 and Bcl-xL. Interestingly, transcriptome analyses indicated that STAP-1 affects several signaling pathways related to BCR-ABL, JAK2, and PPARγ. This adapter protein directly binds to not only BCR-ABL, but also STAT5 proteins, showing synergistic effects of STAP-1 inhibition and BCR-ABL or JAK2 tyrosine kinase inhibition. Our results identified STAP-1 as a regulator of CML LSCs and suggested it to be a potential therapeutic target for CML.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose/genética , Modelos Animais de Doenças , Regulação Leucêmica da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Células-Tronco Neoplásicas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Células K562 , Estimativa de Kaplan-Meier , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neoplásicas/patologia , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/genéticaRESUMO
Various central nervous system (CNS) complications may occur after allogeneic hematopoietic stem cell transplantation (allo-HSCT), which can result in severe clinical problems. Diagnosis is often difficult, as distinctive clinical symptoms may be absent and different neurological disorders may exhibit similar symptoms. Despite the fact that antibodies responding to brain cell surface antigens have become well recognized in several CNS disorders, cases of autoimmune CNS disorders after allo-HSCT have rarely been reported. Here, we report on a patient who developed encephalitis associated with antibodies against N-methyl-D-aspartate (NMDA)-type glutamate receptor (GluR) after allo-HSCT. To the best of our knowledge, this is the first report of the involvement of antibodies against NMDA-type GluR in post-transplantation encephalitis. Autoimmunity to NMDA-type GluR may have contributed to neurological complications after transplantation in unresolved cases.
Assuntos
Autoanticorpos/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Encefalite Límbica/etiologia , Encefalite Límbica/imunologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/imunologia , Receptores de Glutamato/imunologia , Receptores de N-Metil-D-Aspartato/imunologia , Autoimunidade , Feminino , Humanos , Pessoa de Meia-Idade , Transplante Homólogo/efeitos adversosRESUMO
The human gut harbours diverse microorganisms, and gut dysbiosis has recently attracted attention because of its possible involvement in various diseases. In particular, the lack of diversity in the gut microbiota has been associated with complications of haematopoietic stem cell transplantation (HSCT), such as infections, acute graft-versus-host disease and relapse of primary disease, which lead to a poor prognosis. However, few studies have serially examined the composition of the intestinal microbiota after HSCT. In this study, we demonstrated, using next-generation sequencing of the bacterial 16S ribosomal RNA gene, combined with uniFrac distance analysis, that the intestinal microbiota of patients undergoing allogeneic HSCT substantially differed from that of healthy controls and recipients of autologous transplants. Faecal samples were obtained daily throughout the clinical course, before and after transplantation. Notably, the proportions of Bifidobacterium and genera categorized as butyrate-producing bacteria were significantly lower in patients with allogeneic HSCT than in healthy controls. Furthermore, among allogeneic transplant recipients, a subgroup with a preserved microbiota composition showed a benign course, whereas patients with a skewed microbiota showed a high frequency of complications and mortality after transplantation. Thus, we conclude that the stability of intestinal microbiota is critically involved in outcomes of HSCT.
Assuntos
Microbioma Gastrointestinal , Transplante de Células-Tronco Hematopoéticas/métodos , Adulto , Aloenxertos , Autoenxertos , Técnicas de Tipagem Bacteriana , Bifidobacterium/isolamento & purificação , Estudos de Casos e Controles , DNA Bacteriano/genética , Disbiose/complicações , Disbiose/microbiologia , Fezes/microbiologia , Feminino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Intestinos/microbiologia , Masculino , Metagenômica/métodos , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , RNA Ribossômico 16S/genética , Análise de Sobrevida , Condicionamento Pré-Transplante/métodosRESUMO
Endothelial cell-selective adhesion molecule (ESAM) is a lifelong marker of hematopoietic stem cells (HSCs). Although we previously elucidated the functional importance of ESAM in HSCs in stress-induced hematopoiesis in adults, it is unclear how ESAM affects hematopoietic development during fetal life. To address this issue, we analyzed fetuses from conventional or conditional ESAM-knockout mice. Approximately half of ESAM-null fetuses died after mid-gestation due to anemia. RNA sequencing analyses revealed downregulation of adult-type globins and Alas2, a heme biosynthesis enzyme, in ESAM-null fetal livers. These abnormalities were attributed to malfunction of ESAM-null HSCs, which was demonstrated in culture and transplantation experiments. Although crosslinking ESAM directly influenced gene transcription in HSCs, observations in conditional ESAM-knockout fetuses revealed the critical involvement of ESAM expressed in endothelial cells in fetal lethality. Thus, we showed that ESAM had important roles in developing definitive hematopoiesis. Furthermore, we unveiled the importance of endothelial ESAM in this process.