Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Leukemia ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354203

RESUMO

Acute myeloid leukemia (AML) shows variable clinical outcome. The normal hematopoietic cell of origin impacts the clinical behavior of AML, with AML from hematopoietic stem cells (HSCs) prone to chemotherapy resistance in model systems. However, the mechanisms by which HSC programs are transmitted to AML are not known. Here, we introduce the leukemogenic MLL-AF9 translocation into defined human hematopoietic populations, finding that AML from HSCs is enriched for leukemic stem cells (LSCs) compared to AML from progenitors. By epigenetic profiling, we identify a putative inherited program from the normal HSC that collaborates with oncogene-driven programs to confer aggressive behavior in HSC-AML. We find that components of this program are required for HSC-AML growth and survival and identify RNA polymerase (RNAP) II-mediated transcription as a therapeutic vulnerability. Overall, we propose a mechanism as to how epigenetic programs from the leukemic cell of origin are inherited through transformation to impart the clinical heterogeneity of AML.

2.
Adv Exp Med Biol ; 1459: 199-215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017845

RESUMO

BCL11A, a zinc finger repressor, is a stage-specific transcription factor that controls the switch from fetal (HbF, α2γ2) to adult (HbA, α2ß2) hemoglobin in erythroid cells. While BCL11A was known as a factor critical for B-lymphoid cell development, its relationship to erythroid cells and HbF arose through genome-wide association studies (GWAS). Subsequent work validated its role as a silencer of γ-globin gene expression in cultured cells and mice. Erythroid-specific loss of BCL11A rescues the phenotype of engineered sickle cell disease (SCD) mice, thereby suggesting that downregulation of BCL11A expression might be beneficial in patients with SCD and ß-thalassemia. Common genetic variation in GWAS resides in an erythroid-specific enhancer within the BCL11A gene that is required for its own expression. CRISPR/Cas9 gene editing of the enhancer revealed a GATA-binding site that confers a large portion of its regulatory function. Disruption of the GATA site leads to robust HbF reactivation. Advancement of a guide RNA targeting the GATA-binding site in clinical trials has recently led to approval of first-in-man use of ex vivo CRISPR editing of hematopoietic stem/progenitor cells (HSPCs) as therapy of SCD and ß-thalassemia. Future challenges include expanding access and infrastructure for delivery of genetic therapy to eligible patients, reducing potential toxicity and costs, exploring prospects for in vivo targeting of hematopoietic stem cells (HSCs), and developing small molecule drugs that impair function of BCL11A protein as an alternative option.


Assuntos
Células Eritroides , Proteínas Repressoras , Animais , Humanos , Camundongos , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Talassemia beta/genética , Talassemia beta/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Sistemas CRISPR-Cas , Células Eritroides/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Edição de Genes/métodos , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
3.
Nat Commun ; 14(1): 7978, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042929

RESUMO

PDGFRA-expressing mesenchyme supports intestinal stem cells. Stomach epithelia have related niche dependencies, but their enabling mesenchymal cell populations are unknown, in part because previous studies pooled the gastric antrum and corpus. Our high-resolution imaging, transcriptional profiling, and organoid assays identify regional subpopulations and supportive capacities of purified mouse corpus and antral PDGFRA+ cells. Sub-epithelial PDGFRAHi myofibroblasts are principal sources of BMP ligands and two molecularly distinct pools distribute asymmetrically along antral glands but together fail to support epithelial growth in vitro. In contrast, PDGFRALo CD55+ cells strategically positioned beneath gastric glands promote epithelial expansion in the absence of other cells or factors. This population encompasses a small fraction expressing the BMP antagonist Grem1. Although Grem1+ cell ablation in vivo impairs intestinal stem cells, gastric stem cells are spared, implying that CD55+ cell activity in epithelial self-renewal derives from other subpopulations. Our findings shed light on spatial, molecular, and functional organization of gastric mesenchyme and the spectrum of signaling sources for epithelial support.


Assuntos
Mucosa Gástrica , Estômago , Camundongos , Animais , Células-Tronco , Intestinos , Antro Pilórico , Receptores Proteína Tirosina Quinases , Células Epiteliais
4.
BMC Genomics ; 24(1): 614, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833630

RESUMO

BACKGROUND: Chromosomal compartmentalization plays a critical role in maintaining proper transcriptional programs in cell differentiation and oncogenesis. However, currently the prevalent method for comparative analysis of compartmentalization landscapes between different cell types is limited to the qualitative switched compartments. RESULTS: To identify genomic regions with quantitatively differential compartmentalization changes from genome-wide chromatin conformation data like Hi-C, we developed a computational framework named DARIC. DARIC includes three modules: compartmentalization quantification, normalization, and differential analysis. Comparing DARIC with the conventional compartment switching analysis reveals substantial regions characterized by quantitatively significant compartmentalization changes without switching. These changes are accompanied by changes in gene expression, chromatin accessibility, H3K27ac intensity, as well as the interactions with nuclear lamina proteins and nuclear positioning, highlighting the functional importance of such quantitative changes in gene regulation. We applied DARIC to dissect the quantitative compartmentalization changes during human cardiomyocyte differentiation and identified two distinct mechanisms for gene activation based on the association with compartmentalization changes. Using the quantitative compartmentalization measurement module from DARIC, we further dissected the compartment variability landscape in the human genome by analyzing a compendium of 32 Hi-C datasets from 4DN. We discovered an interesting correlation between compartmentalization variability and sub-compartments. CONCLUSIONS: DARIC is a useful tool for analyzing quantitative compartmentalization changes and mining novel biological insights from increasing Hi-C data. Our results demonstrate the functional significance of quantitative compartmentalization changes in gene regulation, and provide new insights into the relationship between compartmentalization variability and sub-compartments in the human genome.


Assuntos
Cromatina , Cromossomos , Humanos , Cromatina/genética , Genoma Humano , Regulação da Expressão Gênica , Genômica
5.
Blood Adv ; 7(18): 5281-5293, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37428871

RESUMO

CRISPR/Cas9 screening approaches are powerful tool for identifying in vivo cancer dependencies. Hematopoietic malignancies are genetically complex disorders in which the sequential acquisition of somatic mutations generates clonal diversity. Over time, additional cooperating mutations may drive disease progression. Using an in vivo pooled gene editing screen of epigenetic factors in primary murine hematopoietic stem and progenitor cells (HSPCs), we sought to uncover unrecognized genes that contribute to leukemia progression. We, first, modeled myeloid leukemia in mice by functionally abrogating both Tet2 and Tet3 in HSPCs, followed by transplantation. We, then, performed pooled CRISPR/Cas9 editing of genes encoding epigenetic factors and identified Pbrm1/Baf180, a subunit of the polybromo BRG1/BRM-associated factor SWItch/Sucrose Non-Fermenting chromatin-remodeling complex, as a negative driver of disease progression. We found that Pbrm1 loss promoted leukemogenesis with a significantly shortened latency. Pbrm1-deficient leukemia cells were less immunogenic and were characterized by attenuated interferon signaling and reduced major histocompatibility complex class II (MHC II) expression. We explored the potential relevance to human leukemia by assessing the involvement of PBRM1 in the control of interferon pathway components and found that PBRM1 binds to the promoters of a subset of these genes, most notably IRF1, which in turn regulates MHC II expression. Our findings revealed a novel role for Pbrm1 in leukemia progression. More generally, CRISPR/Cas9 screening coupled with phenotypic readouts in vivo has helped identify a pathway by which transcriptional control of interferon signaling influences leukemia cell interactions with the immune system.


Assuntos
Sistemas CRISPR-Cas , Proteínas de Ligação a DNA , Leucemia Mieloide , Fatores de Transcrição , Animais , Humanos , Camundongos , Progressão da Doença , Edição de Genes , Leucemia Mieloide/genética , Mutação , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
6.
Res Sq ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37162846

RESUMO

Background: Chromosomal compartmentalization plays a critical role in maintaining proper transcriptional programs in cell differentiation and oncogenesis. However, currently the prevalent method for comparative analysis of compartmentalization landscapes between different cell types is limited to the qualitative switched compartments. Results: To identify genomic regions with quantitatively differential compartmentalization changes from genome-wide chromatin conformation data like Hi-C, we developed a computational framework named DARIC. DARIC includes three modules: compartmentalization quantification, normalization, and differential analysis. Comparing DARIC with the conventional compartment switching analysis reveals substantial regions characterized by quantitatively significant compartmentalization changes without switching. These changes are accompanied by changes in gene expression, chromatin accessibility, H3K27ac intensity, as well as the interactions with nuclear lamina proteins and nuclear positioning, highlighting the functional importance of such quantitative changes in gene regulation. We applied DARIC to dissect the quantitative compartmentalization changes during human cardiomyocyte differentiation and identified two distinct mechanisms for gene activation based on the association with compartmentalization changes. Using the quantitative compartmentalization measurement module from DARIC, we further dissected the compartment variability landscape in the human genome by analyzing a compendium of 32 Hi-C datasets from 4DN. We discovered an interesting correlation between compartmentalization variability and sub-compartments. Conclusions: DARIC is a useful tool for analyzing quantitative compartmentalization changes and mining novel biological insights from increasing Hi-C data. Our results demonstrate the functional significance of quantitative compartmentalization changes in gene regulation, and provide new insights into the relationship between compartmentalization variability and sub-compartments in the human genome.

7.
bioRxiv ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066194

RESUMO

Attenuating aberrant transcriptional circuits holds great promise for the treatment of numerous diseases, including cancer. However, development of transcriptional inhibitors is hampered by the lack of a generally accepted functional cellular readout to characterize their target specificity and on-target activity. We benchmarked the direct gene-regulatory signatures of six agents reported as inhibitors of the oncogenic transcription factor MYB against targeted MYB degradation in a nascent transcriptomics assay. The inhibitors demonstrated partial specificity for MYB target genes but displayed significant off-target activity. Unexpectedly, the inhibitors displayed bimodal on-target effects, acting as mixed agonists-antagonists. Our data uncover unforeseen agonist effects of small molecules originally developed as TF inhibitors and argue that rapid-kinetics benchmarking against degron models should be used for functional characterization of transcriptional modulators.

8.
bioRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993171

RESUMO

Lineage-defining transcription factors form densely interconnected circuits in chromatin occupancy assays, but the functional significance of these networks remains underexplored. We reconstructed the functional topology of a leukemia cell transcription network from the direct gene-regulatory programs of eight core transcriptional regulators established in pre-steady state assays coupling targeted protein degradation with nascent transcriptomics. The core regulators displayed narrow, largely non-overlapping direct transcriptional programs, forming a sparsely interconnected functional hierarchy stabilized by incoherent feed-forward loops. BET bromodomain and CDK7 inhibitors disrupted the core regulators' direct programs, acting as mixed agonists/antagonists. The network is predictive of dynamic gene expression behaviors in time-resolved assays and clinically relevant pathway activity in patient populations.

9.
Hematol Oncol Clin North Am ; 37(2): 301-312, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907604

RESUMO

ß-thalassemia is caused by mutations that reduce ß-globin production, causing globin chain imbalance, ineffective erythropoiesis, and consequent anemia. Increased fetal hemoglobin (HbF) levels can ameliorate the severity of ß-thalassemia by compensating for the globin chain imbalance. Careful clinical observations paired with population studies and advances in human genetics have enabled the discovery of major regulators of HbF switching (i.e. BCL11A, ZBTB7A) and led to pharmacological and genetic therapies for treating ß-thalassemia patients. Recent functional screens using genome editing and other emerging tools have identified many new HbF regulators, which may improve therapeutic HbF induction in the future.


Assuntos
Hemoglobina Fetal , Talassemia beta , Humanos , Hemoglobina Fetal/genética , Talassemia beta/genética , Proteínas de Ligação a DNA , Linhagem Celular Tumoral , Fatores de Transcrição
10.
Methods Enzymol ; 681: 1-22, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36764753

RESUMO

The dTAG system is a versatile strategy for tunable control of protein abundance and facilitates the time-resolved assessment of disease-associated protein function. A "co-opted" fusion-based degron peptide, the "dTAG" facilitates the study of endogenous protein function when knocked-in at the endogenous genetic loci of proteins of interest. We combine CRISPR/Cas9 mediated induction of double-strand breaks (DSB) with the delivery of a single-stranded DNA HDR-donor-template via crude preparations of recombinant adeno-associated virus (rAAV). Our approach to knock-in of large (1-2kb) DNA fragments via crude-rAAV mediated HDR donor delivery is rapid and inexpensive. It facilitates genetic modification of a variety of human as well as mouse cell lines at high efficiency and precision.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Camundongos , Humanos , DNA , DNA de Cadeia Simples , Reparo de DNA por Recombinação
11.
Nat Commun ; 14(1): 336, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670102

RESUMO

Inhibitors of the Polycomb Repressive Complex 2 (PRC2) histone methyltransferase EZH2 are approved for certain cancers, but realizing their wider utility relies upon understanding PRC2 biology in each cancer system. Using a genetic model to delete Ezh2 in KRAS-driven lung adenocarcinomas, we observed that Ezh2 haplo-insufficient tumors were less lethal and lower grade than Ezh2 fully-insufficient tumors, which were poorly differentiated and metastatic. Using three-dimensional cultures and in vivo experiments, we determined that EZH2-deficient tumors were vulnerable to H3K27 demethylase or BET inhibitors. PRC2 loss/inhibition led to de-repression of FOXP2, a transcription factor that promotes migration and stemness, and FOXP2 could be suppressed by BET inhibition. Poorly differentiated human lung cancers were enriched for an H3K27me3-low state, representing a subtype that may benefit from BET inhibition as a single therapy or combined with additional EZH2 inhibition. These data highlight diverse roles of PRC2 in KRAS-driven lung adenocarcinomas, and demonstrate the utility of three-dimensional cultures for exploring epigenetic drug sensitivities for cancer.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/genética , Neoplasias/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Epigênese Genética , Fatores de Transcrição Forkhead/genética
12.
Blood Cancer Discov ; 3(5): 394-409, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35709529

RESUMO

Relapse of acute myeloid leukemia (AML) after allogeneic bone marrow transplantation has been linked to immune evasion due to reduced expression of major histocompatibility complex class II (MHCII) genes through unknown mechanisms. In this work, we developed CORENODE, a computational algorithm for genome-wide transcription network decomposition that identified a transcription factor (TF) tetrad consisting of IRF8, MYB, MEF2C, and MEIS1, regulating MHCII expression in AML cells. We show that reduced MHCII expression at relapse is transcriptionally driven by combinatorial changes in the expression of these TFs, where MYB and IRF8 play major opposing roles, acting independently of the IFNγ/CIITA pathway. Beyond the MHCII genes, MYB and IRF8 antagonistically regulate a broad genetic program responsible for cytokine signaling and T-cell stimulation that displays reduced expression at relapse. A small number of cells with altered TF abundance and silenced MHCII expression are present at the time of initial leukemia diagnosis, likely contributing to eventual relapse. SIGNIFICANCE: Our findings point to an adaptive transcriptional mechanism of AML evolution after allogeneic transplantation whereby combinatorial fluctuations of TF expression under immune pressure result in the selection of cells with a silenced T-cell stimulation program. This article is highlighted in the In This Issue feature, p. 369.


Assuntos
Leucemia Mieloide Aguda , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Fatores Reguladores de Interferon , Leucemia Mieloide Aguda/genética , Recidiva , Transplante Homólogo
13.
Stem Cell Reports ; 17(7): 1546-1560, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35714596

RESUMO

Hematopoiesis is maintained by functionally diverse lineage-biased hematopoietic stem cells (HSCs). The functional significance of HSC heterogeneity and the regulatory mechanisms underlying lineage bias are not well understood. However, absolute purification of HSC subtypes with a pre-determined behavior remains challenging, highlighting the importance of continued efforts toward prospective isolation of homogeneous HSC subsets. In this study, we demonstrate that CD49b subdivides the most primitive HSC compartment into functionally distinct subtypes: CD49b- HSCs are highly enriched for myeloid-biased and the most durable cells, while CD49b+ HSCs are enriched for multipotent cells with lymphoid bias and reduced self-renewal ability. We further demonstrate considerable transcriptional similarities between CD49b- and CD49b+ HSCs but distinct differences in chromatin accessibility. Our studies highlight the diversity of HSC functional behaviors and provide insights into the molecular regulation of HSC heterogeneity through transcriptional and epigenetic mechanisms.


Assuntos
Células-Tronco Hematopoéticas , Integrina alfa2 , Diferenciação Celular/genética , Linhagem da Célula/genética , Hematopoese/genética , Células-Tronco Multipotentes
14.
Cell Rep ; 39(1): 110587, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385744

RESUMO

Hematopoiesis changes over life to meet the demands of maturation and aging. Here, we find that the definitive hematopoietic stem and progenitor cell (HSPC) compartment is remodeled from gestation into adulthood, a process regulated by the heterochronic Lin28b/let-7 axis. Native fetal and neonatal HSPCs distribute with a pro-lymphoid/erythroid bias with a shift toward myeloid output in adulthood. By mining transcriptomic data comparing juvenile and adult HSPCs and reconstructing coordinately activated gene regulatory networks, we uncover the Polycomb repressor complex 1 (PRC1) component Cbx2 as an effector of Lin28b/let-7's control of hematopoietic maturation. We find that juvenile Cbx2-/- hematopoietic tissues show impairment of B-lymphopoiesis, a precocious adult-like myeloid bias, and that Cbx2/PRC1 regulates developmental timing of expression of key hematopoietic transcription factors. These findings define a mechanism of regulation of HSPC output via chromatin modification as a function of age with potential impact on age-biased pediatric and adult blood disorders.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , MicroRNAs , Complexo Repressor Polycomb 1 , Proteínas de Ligação a RNA , Adulto , Animais , Criança , Redes Reguladoras de Genes , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Recém-Nascido , Linfopoese , Camundongos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
15.
Cancer Discov ; 12(7): 1760-1781, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35405016

RESUMO

Leukemic blasts are immune cells gone awry. We hypothesized that dysregulation of inflammatory pathways contributes to the maintenance of their leukemic state and can be exploited as cell-intrinsic, self-directed immunotherapy. To this end, we applied genome-wide screens to discover genetic vulnerabilities in acute myeloid leukemia (AML) cells implicated in inflammatory pathways. We identified the immune modulator IRF2BP2 as a selective AML dependency. We validated AML cell dependency on IRF2BP2 with genetic and protein degradation approaches in vitro and genetically in vivo. Chromatin and global gene-expression studies demonstrated that IRF2BP2 represses IL1ß/TNFα signaling via NFκB, and IRF2BP2 perturbation results in an acute inflammatory state leading to AML cell death. These findings elucidate a hitherto unexplored AML dependency, reveal cell-intrinsic inflammatory signaling as a mechanism priming leukemic blasts for regulated cell death, and establish IRF2BP2-mediated transcriptional repression as a mechanism for blast survival. SIGNIFICANCE: This study exploits inflammatory programs inherent to AML blasts to identify genetic vulnerabilities in this disease. In doing so, we determined that AML cells are dependent on the transcriptional repressive activity of IRF2BP2 for their survival, revealing cell-intrinsic inflammation as a mechanism priming leukemic blasts for regulated cell death. See related commentary by Puissant and Medyouf, p. 1617. This article is highlighted in the In This Issue feature, p. 1599.


Assuntos
Leucemia Mieloide Aguda , Humanos , Inflamação/genética , Leucemia Mieloide Aguda/genética , NF-kappa B/metabolismo , Transdução de Sinais
16.
Cell Rep ; 39(4): 110752, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35476984

RESUMO

High-risk forms of B-acute lymphoblastic leukemia (B-ALL) remain a therapeutic challenge. Leukemia-initiating cells (LICs) self-renew and spark relapse and therefore have been the subject of intensive investigation; however, the properties of LICs in high-risk B-ALL are not well understood. Here, we use single-cell transcriptomics and quantitative xenotransplantation to understand LICs in MLL-rearranged (MLL-r) B-ALL. Compared with reported LIC frequencies in acute myeloid leukemia (AML), engraftable LICs in MLL-r B-ALL are abundant. Although we find that multipotent, self-renewing LICs are enriched among phenotypically undifferentiated B-ALL cells, LICs with the capacity to replenish the leukemic cellular diversity can emerge from more mature fractions. While inhibiting oxidative phosphorylation blunts blast proliferation, this intervention promotes LIC emergence. Conversely, inhibiting hypoxia and glycolysis impairs MLL-r B-ALL LICs, providing a therapeutic benefit in xenotransplantation systems. These findings provide insight into the aggressive nature of MLL-r B-ALL and provide a rationale for therapeutic targeting of hypoxia and glycolysis.


Assuntos
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Glicólise , Humanos , Hipóxia , Leucemia Mieloide Aguda/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
17.
Genes Dev ; 36(5-6): 368-389, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35301220

RESUMO

Acute myeloid leukemia with KMT2A (MLL) rearrangements is characterized by specific patterns of gene expression and enhancer architecture, implying unique core transcriptional regulatory circuitry. Here, we identified the transcription factors MEF2D and IRF8 as selective transcriptional dependencies of KMT2A-rearranged AML, where MEF2D displays partially redundant functions with its paralog, MEF2C. Rapid transcription factor degradation followed by measurements of genome-wide transcription rates and superresolution microscopy revealed that MEF2D and IRF8 form a distinct core regulatory module with a narrow direct transcriptional program that includes activation of the key oncogenes MYC, HOXA9, and BCL2. Our study illustrates a mechanism of context-specific transcriptional addiction whereby a specific AML subclass depends on a highly specialized core regulatory module to directly enforce expression of common leukemia oncogenes.


Assuntos
Leucemia Mieloide Aguda , Proteína de Leucina Linfoide-Mieloide , Rearranjo Gênico , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Leucemia Mieloide Aguda/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Oncogenes/genética
18.
Blood ; 139(16): 2534-2546, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35030251

RESUMO

Master regulators, such as the hematopoietic transcription factor (TF) GATA1, play an essential role in orchestrating lineage commitment and differentiation. However, the precise mechanisms by which such TFs regulate transcription through interactions with specific cis-regulatory elements remain incompletely understood. Here, we describe a form of congenital hemolytic anemia caused by missense mutations in an intrinsically disordered region of GATA1, with a poorly understood role in transcriptional regulation. Through integrative functional approaches, we demonstrate that these mutations perturb GATA1 transcriptional activity by partially impairing nuclear localization and selectively altering precise chromatin occupancy by GATA1. These alterations in chromatin occupancy and concordant chromatin accessibility changes alter faithful gene expression, with failure to both effectively silence and activate select genes necessary for effective terminal red cell production. We demonstrate how disease-causing mutations can reveal regulatory mechanisms that enable the faithful genomic targeting of master TFs during cellular differentiation.


Assuntos
Anemia , Fator de Transcrição GATA1 , Diferenciação Celular/genética , Cromatina/genética , Imunoprecipitação da Cromatina , Eritropoese/genética , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Humanos
19.
Genes Dev ; 36(1-2): 38-52, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34969824

RESUMO

Barrett's esophagus (BE) and gastric intestinal metaplasia are related premalignant conditions in which areas of human stomach epithelium express mixed gastric and intestinal features. Intestinal transcription factors (TFs) are expressed in both conditions, with unclear causal roles and cis-regulatory mechanisms. Ectopic CDX2 reprogrammed isogenic mouse stomach organoid lines to a hybrid stomach-intestinal state transcriptionally similar to clinical metaplasia; squamous esophageal organoids resisted this CDX2-mediated effect. Reprogramming was associated with induced activity at thousands of previously inaccessible intestine-restricted enhancers, where CDX2 occupied DNA directly. HNF4A, a TF recently implicated in BE pathogenesis, induced weaker intestinalization by binding a novel shadow Cdx2 enhancer and hence activating Cdx2 expression. CRISPR/Cas9-mediated germline deletion of that cis-element demonstrated its requirement in Cdx2 induction and in the resulting activation of intestinal genes in stomach cells. dCas9-conjugated KRAB repression mapped this activity to the shadow enhancer's HNF4A binding site. Altogether, we show extensive but selective recruitment of intestinal enhancers by CDX2 in gastric cells and that HNF4A-mediated ectopic CDX2 expression in the stomach occurs through a conserved shadow cis-element. These findings identify mechanisms for TF-driven intestinal metaplasia and a likely pathogenic TF hierarchy.


Assuntos
Esôfago de Barrett , Fatores de Transcrição , Animais , Esôfago de Barrett/genética , Esôfago de Barrett/metabolismo , Esôfago de Barrett/patologia , Fator de Transcrição CDX2/genética , Proteínas de Homeodomínio/genética , Metaplasia/genética , Camundongos , Fatores de Transcrição/genética
20.
Nat Commun ; 12(1): 6241, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716321

RESUMO

Precise control of gene expression during differentiation relies on the interplay of chromatin and nuclear structure. Despite an established contribution of nuclear membrane proteins to developmental gene regulation, little is known regarding the role of inner nuclear proteins. Here we demonstrate that loss of the nuclear scaffolding protein Matrin-3 (Matr3) in erythroid cells leads to morphological and gene expression changes characteristic of accelerated maturation, as well as broad alterations in chromatin organization similar to those accompanying differentiation. Matr3 protein interacts with CTCF and the cohesin complex, and its loss perturbs their occupancy at a subset of sites. Destabilization of CTCF and cohesin binding correlates with altered transcription and accelerated differentiation. This association is conserved in embryonic stem cells. Our findings indicate Matr3 negatively affects cell fate transitions and demonstrate that a critical inner nuclear protein impacts occupancy of architectural factors, culminating in broad effects on chromatin organization and cell differentiation.


Assuntos
Cromatina/química , Leucemia Eritroblástica Aguda/patologia , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/fisiologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias/fisiologia , Células Eritroides/patologia , Leucemia Eritroblástica Aguda/metabolismo , Camundongos Knockout , Proteínas Associadas à Matriz Nuclear/genética , Proteínas de Ligação a RNA/genética , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA