Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Breast Cancer Res ; 24(1): 31, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505346

RESUMO

BACKGROUND: The interferon response can influence the primary and metastatic activity of breast cancers and can interact with checkpoint immunotherapy to modulate its effects. Using N-ethyl-N-nitrosourea mutagenesis, we found a mouse with an activating mutation in oligoadenylate synthetase 2 (Oas2), a sensor of viral double stranded RNA, that resulted in an interferon response and prevented lactation in otherwise healthy mice. METHODS: To determine if sole activation of Oas2 could alter the course of mammary cancer, we combined the Oas2 mutation with the MMTV-PyMT oncogene model of breast cancer and examined disease progression and the effects of checkpoint immunotherapy using Kaplan-Meier survival analysis with immunohistochemistry and flow cytometry. RESULTS: Oas2 mutation prevented pregnancy from increasing metastases to lung. Checkpoint immunotherapy with antibodies against programmed death-ligand 1 was more effective when the Oas2 mutation was present. CONCLUSIONS: These data establish OAS2 as a therapeutic target for agents designed to reduce metastases and increase the effectiveness of checkpoint immunotherapy.


Assuntos
2',5'-Oligoadenilato Sintetase , Neoplasias da Mama , 2',5'-Oligoadenilato Sintetase/genética , Nucleotídeos de Adenina , Animais , Neoplasias da Mama/genética , Feminino , Humanos , Interferons , Ligases , Camundongos , Oligorribonucleotídeos , Gravidez
2.
Sci Adv ; 7(38): eabc8145, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34524841

RESUMO

Most breast cancer deaths are caused by estrogen receptor-α­positive (ER+) disease. Preclinical progress is hampered by a shortage of therapy-naïve ER+ tumor models that recapitulate metastatic progression and clinically relevant therapy resistance. Human prolactin (hPRL) is a risk factor for primary and metastatic ER+ breast cancer. Because mouse prolactin fails to activate hPRL receptors, we developed a prolactin-humanized Nod-SCID-IL2Rγ (NSG) mouse (NSG-Pro) with physiological hPRL levels. Here, we show that NSG-Pro mice facilitate establishment of therapy-naïve, estrogen-dependent PDX tumors that progress to lethal metastatic disease. Preclinical trials provide first-in-mouse efficacy of pharmacological hPRL suppression on residual ER+ human breast cancer metastases and document divergent biology and drug responsiveness of tumors grown in NSG-Pro versus NSG mice. Oncogenomic analyses of PDX lines in NSG-Pro mice revealed clinically relevant therapy-resistance mechanisms and unexpected, potently actionable vulnerabilities such as DNA-repair aberrations. The NSG-Pro mouse unlocks previously inaccessible precision medicine approaches for ER+ breast cancers.

3.
Front Cell Dev Biol ; 8: 552, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32766238

RESUMO

Breast cancers display phenotypic and functional heterogeneity and several lines of evidence support the existence of cancer stem cells (CSCs) in certain breast cancers, a minor population of cells capable of tumor initiation and metastatic dissemination. Identifying factors that regulate the CSC phenotype is therefore important for developing strategies to treat metastatic disease. The Inhibitor of Differentiation Protein 1 (Id1) and its closely related family member Inhibitor of Differentiation 3 (Id3) (collectively termed Id) are expressed by a diversity of stem cells and are required for metastatic dissemination in experimental models of breast cancer. In this study, we show that ID1 is expressed in rare neoplastic cells within ER-negative breast cancers. To address the function of Id1 expressing cells within tumors, we developed independent murine models of Triple Negative Breast Cancer (TNBC) in which a genetic reporter permitted the prospective isolation of Id1+ cells. Id1+ cells are enriched for self-renewal in tumorsphere assays in vitro and for tumor initiation in vivo. Conversely, depletion of Id1 and Id3 in the 4T1 murine model of TNBC demonstrates that Id1/3 are required for cell proliferation and self-renewal in vitro, as well as primary tumor growth and metastatic colonization of the lung in vivo. Using combined bioinformatic analysis, we have defined a novel mechanism of Id protein function via negative regulation of the Roundabout Axon Guidance Receptor Homolog 1 (Robo1) leading to activation of a Myc transcriptional programme.

4.
Breast Cancer Res ; 22(1): 63, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527287

RESUMO

BACKGROUND: Basal-like breast cancer (BLBC) is a poorly characterised, heterogeneous disease. Patients are diagnosed with aggressive, high-grade tumours and often relapse with chemotherapy resistance. Detailed understanding of the molecular underpinnings of this disease is essential to the development of personalised therapeutic strategies. Inhibitor of differentiation 4 (ID4) is a helix-loop-helix transcriptional regulator required for mammary gland development. ID4 is overexpressed in a subset of BLBC patients, associating with a stem-like poor prognosis phenotype, and is necessary for the growth of cell line models of BLBC through unknown mechanisms. METHODS: Here, we have defined unique molecular insights into the function of ID4 in BLBC and the related disease high-grade serous ovarian cancer (HGSOC), by combining RIME proteomic analysis, ChIP-seq mapping of genomic binding sites and RNA-seq. RESULTS: These studies reveal novel interactions with DNA damage response proteins, in particular, mediator of DNA damage checkpoint protein 1 (MDC1). Through MDC1, ID4 interacts with other DNA repair proteins (γH2AX and BRCA1) at fragile chromatin sites. ID4 does not affect transcription at these sites, instead binding to chromatin following DNA damage. Analysis of clinical samples demonstrates that ID4 is amplified and overexpressed at a higher frequency in BRCA1-mutant BLBC compared with sporadic BLBC, providing genetic evidence for an interaction between ID4 and DNA damage repair deficiency. CONCLUSIONS: These data link the interactions of ID4 with MDC1 to DNA damage repair in the aetiology of BLBC and HGSOC.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Animais , Apoptose/fisiologia , Neoplasias da Mama/patologia , Carcinoma Basocelular/patologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Prognóstico , Proteogenômica , Células Tumorais Cultivadas
5.
PLoS Genet ; 16(1): e1008531, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31895944

RESUMO

Acquired resistance to endocrine therapy is responsible for half of the therapeutic failures in the treatment of breast cancer. Recent findings have implicated increased expression of the ETS transcription factor ELF5 as a potential modulator of estrogen action and driver of endocrine resistance, and here we provide the first insight into the mechanisms by which ELF5 modulates estrogen sensitivity. Using chromatin immunoprecipitation sequencing we found that ELF5 binding overlapped with FOXA1 and ER at super enhancers, enhancers and promoters, and when elevated, caused FOXA1 and ER to bind to new regions of the genome, in a pattern that replicated the alterations to the ER/FOXA1 cistrome caused by the acquisition of resistance to endocrine therapy. RNA sequencing demonstrated that these changes altered estrogen-driven patterns of gene expression, the expression of ER transcription-complex members, and 6 genes known to be involved in driving the acquisition of endocrine resistance. Using rapid immunoprecipitation mass spectrometry of endogenous proteins, and proximity ligation assays, we found that ELF5 interacted physically with members of the ER transcription complex, such as DNA-PKcs. We found 2 cases of endocrine-resistant brain metastases where ELF5 levels were greatly increased and ELF5 patterns of gene expression were enriched, compared to the matched primary tumour. Thus ELF5 alters ER-driven gene expression by modulating the ER/FOXA1 cistrome, by interacting with it, and by modulating the expression of members of the ER transcriptional complex, providing multiple mechanisms by which ELF5 can drive endocrine resistance.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Células MCF-7 , Camundongos , Ligação Proteica
6.
Oncogene ; 39(8): 1821-1829, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31735913

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest malignancies. It is phenotypically heterogeneous with a highly unstable genome and provides few common therapeutic targets. We found that MCL1, Cofilin1 (CFL1) and SRC mRNA were highly expressed by a wide range of these cancers, suggesting that a strategy of dual MCL-1 and SRC inhibition might be efficacious for many patients. Immunohistochemistry revealed that MCL-1 protein was present at high levels in 94.7% of patients in a cohort of PDACs from Australian Pancreatic Genome Initiative (APGI). High MCL1 and Cofilin1 mRNA expression was also strongly predictive of poor outcome in the TCGA dataset and in the APGI cohort. In culture, MCL-1 antagonism reduced the level of the cytoskeletal remodeling protein Cofilin1 and phosphorylated SRC on the active Y416 residue, suggestive of reduced invasive capacity. The MCL-1 antagonist S63845 synergized with the SRC kinase inhibitor dasatinib to reduce cell viability and invasiveness through 3D-organotypic matrices. In preclinical murine models, this combination reduced primary tumor growth and liver metastasis of pancreatic cancer xenografts. These data suggest that MCL-1 antagonism, while reducing cell viability, may have an additional benefit in increasing the antimetastatic efficacy of dasatinib for the treatment of PDAC.


Assuntos
Adenocarcinoma/patologia , Dasatinibe/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Invasividade Neoplásica
7.
Front Immunol ; 9: 2582, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483257

RESUMO

Cancer is a heterogeneous and complex disease. Tumors are formed by cancer cells and a myriad of non-cancerous cell types that together with the extracellular matrix form the tumor microenvironment. These cancer-associated cells and components contribute to shape the progression of cancer and are deeply involved in patient outcome. The immune system is an essential part of the tumor microenvironment, and induction of cancer immunotolerance is a necessary step involved in tumor formation and growth. Immune mechanisms are intimately associated with cancer progression, invasion, and metastasis; as well as to tumor dormancy and modulation of sensitivity to drug therapy. Transcriptome analyses have been extensively used to understand the heterogeneity of tumors, classifying tumors into molecular subtypes and establishing signatures that predict response to therapy and patient outcomes. However, the classification of the tumor cell diversity and specially the identification of rare populations has been limited in these transcriptomic analyses of bulk tumor cell populations. Massively-parallel single-cell RNAseq analysis has emerged as a powerful method to unravel heterogeneity and to study rare cell populations in cancer, through unsupervised sampling and modeling of transcriptional states in single cells. In this context, the study of the role of the immune system in cancer would benefit from single cell approaches, as it will enable the characterization and/or discovery of the cell types and pathways involved in cancer immunotolerance otherwise missed in bulk transcriptomic information. Thus, the analysis of gene expression patterns at single cell resolution holds the potential to provide key information to develop precise and personalized cancer treatment including immunotherapy. This review is focused on the latest single-cell RNAseq methodologies able to agnostically study thousands of tumor cells as well as targeted single-cell RNAseq to study rare populations within tumors. In particular, we will discuss methods to study the immune system in cancer. We will also discuss the current challenges to the study of cancer at the single cell level and the potential solutions to the current approaches.


Assuntos
Perfilação da Expressão Gênica , Imunoterapia/métodos , Oncologia/tendências , Neoplasias/imunologia , Análise de Célula Única , Animais , Humanos , Medicina de Precisão
8.
Lab Chip ; 18(15): 2156-2166, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29922784

RESUMO

We present here a new method to easily and reliably generate an array of hundreds of dispersed nanoliter-volume semi-droplets for single-cells culture and analysis. The liquid segmentation step occurs directly in indexed traps by a tweezer-like mechanism and is stabilized by spatial confinement. Unlike common droplet-based techniques, the semi-droplet wets its surrounding trap walls thus supporting the culturing of both adherent and non-adherent cells. To eliminate cross-droplet cell migration and chemical cross-talk each semi-droplet is separated from a nearby trap by an ∼80 pL air plug. The overall setup and injection procedure takes less than 10 minutes, is insensitive to fabrication defects and supports cell recovery for downstream analysis. The method offers a new approach to easily capture, image and culture single cells in a chemically isolated microenvironment as a preliminary step towards high-throughput single-cell assays.


Assuntos
Adesão Celular , Técnicas de Cultura de Células/instrumentação , Microambiente Celular , Dispositivos Lab-On-A-Chip , Análise de Célula Única , Linhagem Celular Tumoral , Sobrevivência Celular , Desenho de Equipamento , Humanos
9.
Cell Adh Migr ; 12(6): 513-523, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29166822

RESUMO

Myeloid cell leukemia-1 (MCL-1), closely related to B-cell lymphoma 2 (BCL-2), has a well-established role in cell survival and has emerged as an important target for cancer therapeutics. We have demonstrated that inhibiting MCL-1 is efficacious in suppressing tumour progression in pre-clinical models of breast cancer and revealed that in addition to its role in cell survival, MCL-1 modulated cellular invasion. Utilizing a MCL-1-specific genetic antagonist, we found two possible mechanisms; firstly MCL-1 directly binds to and alters the phosphorylation of the cytoskeletal remodeling protein, Cofilin, a protein important for cytoskeletal remodeling during invasion, and secondly MCL-1 modulates the levels SRC family kinases (SFKs) and their targets. These data provide evidence that MCL-1 activities are not limited to endpoints of extracellular and intracellular signaling culminating in cell survival as previously thought, but can directly modulate the output of SRC family kinases signaling during cellular invasion. Here we review the pleotropic roles of MCL-1 and discuss the implications of this newly discovered effect on protein kinase signaling for the development of cancer therapeutics.


Assuntos
Neoplasias da Mama/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Células Mieloides/metabolismo , Proteínas Quinases/metabolismo , Animais , Sobrevivência Celular/fisiologia , Humanos , Transdução de Sinais/fisiologia
10.
Sci Rep ; 7(1): 15717, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29146920

RESUMO

Quantification of cellular antigens and their interactions via antibody-based detection methods are widely used in scientific research. Accurate high-throughput quantitation of these assays using general image analysis software can be time consuming and challenging, particularly when attempted by users with limited image processing and analysis knowledge. To overcome this, we have designed Andy's Algorithms, a series of automated image analysis pipelines for FIJI, that permits rapid, accurate and reproducible batch-processing of 3,3'-diaminobenzidine (DAB) immunohistochemistry, proximity ligation assays (PLAs) and other common assays. Andy's Algorithms incorporates a step-by-step tutorial and optimization pipeline to make batch image analysis simple for the untrained user and adaptable across laboratories. Andy's algorithms provide a simpler, faster, standardized work flow compared to existing programs, while offering equivalent performance and additional features, in a free to use open-source application of FIJI. Andy's Algorithms are available at GitHub, publicly accessed at https://github.com/andlaw1841/Andy-s-Algorithm .


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Software , 3,3'-Diaminobenzidina/metabolismo , Animais , Automação , Benchmarking , Neoplasias da Mama/patologia , Ensaio de Unidades Formadoras de Colônias , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Análise Serial de Tecidos
11.
PLoS Genet ; 13(11): e1007072, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29117179

RESUMO

We identified a non-synonymous mutation in Oas2 (I405N), a sensor of viral double-stranded RNA, from an ENU-mutagenesis screen designed to discover new genes involved in mammary development. The mutation caused post-partum failure of lactation in healthy mice with otherwise normally developed mammary glands, characterized by greatly reduced milk protein synthesis coupled with epithelial cell death, inhibition of proliferation and a robust interferon response. Expression of mutant but not wild type Oas2 in cultured HC-11 or T47D mammary cells recapitulated the phenotypic and transcriptional effects observed in the mouse. The mutation activates the OAS2 pathway, demonstrated by a 34-fold increase in RNase L activity, and its effects were dependent on expression of RNase L and IRF7, proximal and distal pathway members. This is the first report of a viral recognition pathway regulating lactation.


Assuntos
2',5'-Oligoadenilato Sintetase/genética , Lactação/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Nucleotídeos de Adenina/metabolismo , Animais , Técnicas de Cultura de Células , Endorribonucleases/metabolismo , Feminino , Humanos , Glândulas Mamárias Animais/metabolismo , Camundongos , Leite , Mutação/genética , Oligorribonucleotídeos/metabolismo , RNA de Cadeia Dupla/metabolismo , Transdução de Sinais/genética
12.
Cell Rep ; 21(1): 274-288, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28978480

RESUMO

The small GTPase RhoA is involved in a variety of fundamental processes in normal tissue. Spatiotemporal control of RhoA is thought to govern mechanosensing, growth, and motility of cells, while its deregulation is associated with disease development. Here, we describe the generation of a RhoA-fluorescence resonance energy transfer (FRET) biosensor mouse and its utility for monitoring real-time activity of RhoA in a variety of native tissues in vivo. We assess changes in RhoA activity during mechanosensing of osteocytes within the bone and during neutrophil migration. We also demonstrate spatiotemporal order of RhoA activity within crypt cells of the small intestine and during different stages of mammary gestation. Subsequently, we reveal co-option of RhoA activity in both invasive breast and pancreatic cancers, and we assess drug targeting in these disease settings, illustrating the potential for utilizing this mouse to study RhoA activity in vivo in real time.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia Intravital/métodos , Imagem com Lapso de Tempo/métodos , Proteínas rho de Ligação ao GTP/genética , Animais , Antineoplásicos/farmacologia , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Movimento Celular/efeitos dos fármacos , Dasatinibe/farmacologia , Cloridrato de Erlotinib/farmacologia , Feminino , Transferência Ressonante de Energia de Fluorescência/instrumentação , Regulação da Expressão Gênica , Intestino Delgado/metabolismo , Intestino Delgado/ultraestrutura , Microscopia Intravital/instrumentação , Glândulas Mamárias Animais/irrigação sanguínea , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/ultraestrutura , Neoplasias Mamárias Experimentais/irrigação sanguínea , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/ultraestrutura , Mecanotransdução Celular , Camundongos , Camundongos Transgênicos , Neutrófilos/metabolismo , Neutrófilos/ultraestrutura , Osteócitos/metabolismo , Osteócitos/ultraestrutura , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/ultraestrutura , Imagem com Lapso de Tempo/instrumentação , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP
14.
Sci Transl Med ; 9(384)2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28381539

RESUMO

The emerging standard of care for patients with inoperable pancreatic cancer is a combination of cytotoxic drugs gemcitabine and Abraxane, but patient response remains moderate. Pancreatic cancer development and metastasis occur in complex settings, with reciprocal feedback from microenvironmental cues influencing both disease progression and drug response. Little is known about how sequential dual targeting of tumor tissue tension and vasculature before chemotherapy can affect tumor response. We used intravital imaging to assess how transient manipulation of the tumor tissue, or "priming," using the pharmaceutical Rho kinase inhibitor Fasudil affects response to chemotherapy. Intravital Förster resonance energy transfer imaging of a cyclin-dependent kinase 1 biosensor to monitor the efficacy of cytotoxic drugs revealed that priming improves pancreatic cancer response to gemcitabine/Abraxane at both primary and secondary sites. Transient priming also sensitized cells to shear stress and impaired colonization efficiency and fibrotic niche remodeling within the liver, three important features of cancer spread. Last, we demonstrate a graded response to priming in stratified patient-derived tumors, indicating that fine-tuned tissue manipulation before chemotherapy may offer opportunities in both primary and metastatic targeting of pancreatic cancer.


Assuntos
Progressão da Doença , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/uso terapêutico , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Paclitaxel Ligado a Albumina/farmacologia , Paclitaxel Ligado a Albumina/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Técnicas Biossensoriais , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Matriz Extracelular/metabolismo , Humanos , Fígado/patologia , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Quinases Associadas a rho/metabolismo , Quinases da Família src/metabolismo , Gencitabina
15.
Endocr Relat Cancer ; 24(4): R123-R144, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28193698

RESUMO

A cancer cell-centric view has long dominated the field of cancer biology. Research efforts have focussed on aberrant cancer cell signalling pathways and on changes to cancer cell DNA. Mounting evidence demonstrates that many cancer-associated cell types within the tumour stroma co-evolve and support tumour growth and development, greatly modifying cancer cell behaviour, facilitating invasion and metastasis and controlling dormancy and sensitivity to drug therapy. Thus, these stromal cells represent potential targets for cancer therapy. Among these cell types, immune cells have emerged as a promising target for therapy. The adaptive and the innate immune system play an important role in normal mammary development and breast cancer. The number of infiltrating adaptive immune system cells with tumour-rejecting capacity, primarily, T lymphocytes, is lower in breast cancer compared with other cancer types, but infiltration occurs in a large proportion of cases. There is strong evidence demonstrating the importance of the immunosuppressive role of the innate immune system during breast cancer progression. A consideration of components of both the innate and the adaptive immune system is essential for the design and development of immunotherapies in breast cancer. In this review, we focus on the importance of immunosuppressive myeloid-derived suppressor cells (MDSCs) as potential targets for breast cancer therapy.


Assuntos
Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Imunoterapia , Imunidade Adaptativa , Animais , Humanos , Imunidade Inata
16.
Breast Cancer Res ; 18(1): 125, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27931239

RESUMO

BACKGROUND: Metastatic disease is largely resistant to therapy and accounts for almost all cancer deaths. Myeloid cell leukemia-1 (MCL-1) is an important regulator of cell survival and chemo-resistance in a wide range of malignancies, and thus its inhibition may prove to be therapeutically useful. METHODS: To examine whether targeting MCL-1 may provide an effective treatment for breast cancer, we constructed inducible models of BIMs2A expression (a specific MCL-1 inhibitor) in MDA-MB-468 (MDA-MB-468-2A) and MDA-MB-231 (MDA-MB-231-2A) cells. RESULTS: MCL-1 inhibition caused apoptosis of basal-like MDA-MB-468-2A cells grown as monolayers, and sensitized them to the BCL-2/BCL-XL inhibitor ABT-263, demonstrating that MCL-1 regulated cell survival. In MDA-MB-231-2A cells, grown in an organotypic model, induction of BIMs2A produced an almost complete suppression of invasion. Apoptosis was induced in such a small proportion of these cells that it could not account for the large decrease in invasion, suggesting that MCL-1 was operating via a previously undetected mechanism. MCL-1 antagonism also suppressed local invasion and distant metastasis to the lung in mouse mammary intraductal xenografts. Kinomic profiling revealed that MCL-1 antagonism modulated Src family kinases and their targets, which suggested that MCL-1 might act as an upstream modulator of invasion via this pathway. Inhibition of MCL-1 in combination with dasatinib suppressed invasion in 3D models of invasion and inhibited the establishment of tumors in vivo. CONCLUSION: These data provide the first evidence that MCL-1 drives breast cancer cell invasion and suggests that MCL-1 antagonists could be used alone or in combination with drugs targeting Src kinases such as dasatinib to suppress metastasis.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Dasatinibe/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Mutação , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cell Rep ; 14(1): 152-167, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26725115

RESUMO

E-cadherin-mediated cell-cell junctions play a prominent role in maintaining the epithelial architecture. The disruption or deregulation of these adhesions in cancer can lead to the collapse of tumor epithelia that precedes invasion and subsequent metastasis. Here we generated an E-cadherin-GFP mouse that enables intravital photobleaching and quantification of E-cadherin mobility in live tissue without affecting normal biology. We demonstrate the broad applications of this mouse by examining E-cadherin regulation in multiple tissues, including mammary, brain, liver, and kidney tissue, while specifically monitoring E-cadherin mobility during disease progression in the pancreas. We assess E-cadherin stability in native pancreatic tissue upon genetic manipulation involving Kras and p53 or in response to anti-invasive drug treatment and gain insights into the dynamic remodeling of E-cadherin during in situ cancer progression. FRAP in the E-cadherin-GFP mouse, therefore, promises to be a valuable tool to fundamentally expand our understanding of E-cadherin-mediated events in native microenvironments.


Assuntos
Caderinas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Imagem Óptica/métodos , Microambiente Tumoral , Animais , Caderinas/genética , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/genética , Especificidade de Órgãos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Breast Cancer Res ; 18(1): 4, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26738740

RESUMO

BACKGROUND: E74-like factor 5 (ELF5) is an epithelial-specific member of the E26 transforming sequence (ETS) transcription factor family and a critical regulator of cell fate in the placenta, pulmonary bronchi, and milk-producing alveoli of the mammary gland. ELF5 also plays key roles in malignancy, particularly in basal-like and endocrine-resistant forms of breast cancer. Almost all genes undergo alternative transcription or splicing, which increases the diversity of protein structure and function. Although ELF5 has multiple isoforms, this has not been considered in previous studies of ELF5 function. METHODS: RNA-sequencing data for 6757 samples from The Cancer Genome Atlas were analyzed to characterize ELF5 isoform expression in multiple normal tissues and cancers. Extensive in vitro analysis of ELF5 isoforms, including a 116-gene quantitative polymerase chain reaction panel, was performed in breast cancer cell lines. RESULTS: ELF5 isoform expression was found to be tissue-specific due to alternative promoter use but altered in multiple cancer types. The normal breast expressed one main isoform, while in breast cancer there were subtype-specific alterations in expression. Expression of other ETS factors was also significantly altered in breast cancer, with the basal-like subtype demonstrating a distinct ETS expression profile. In vitro inducible expression of the full-length isoforms 1 and 2, as well as isoform 3 (lacking the Pointed domain) had similar phenotypic and transcriptional effects. CONCLUSIONS: Alternative promoter use, conferring differential regulatory responses, is the main mechanism governing ELF5 action rather than differential transcriptional activity of the isoforms. This understanding of expression and function at the isoform level is a vital first step in realizing the potential of transcription factors such as ELF5 as prognostic markers or therapeutic targets in cancer.


Assuntos
Processamento Alternativo/genética , Proteínas de Ligação a DNA/genética , Neoplasias/genética , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas c-ets/genética , Animais , Proteínas de Ligação a DNA/biossíntese , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Glândulas Mamárias Humanas/patologia , Neoplasias/patologia , Especificidade de Órgãos , Gravidez , Regiões Promotoras Genéticas , Isoformas de Proteínas/biossíntese , Proteínas Proto-Oncogênicas c-ets/biossíntese , Fatores de Transcrição
19.
PLoS Biol ; 13(12): e1002330, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26717410

RESUMO

During pregnancy, the ETS transcription factor ELF5 establishes the milk-secreting alveolar cell lineage by driving a cell fate decision of the mammary luminal progenitor cell. In breast cancer, ELF5 is a key transcriptional determinant of tumor subtype and has been implicated in the development of insensitivity to anti-estrogen therapy. In the mouse mammary tumor virus-Polyoma Middle T (MMTV-PyMT) model of luminal breast cancer, induction of ELF5 levels increased leukocyte infiltration, angiogenesis, and blood vessel permeability in primary tumors and greatly increased the size and number of lung metastasis. Myeloid-derived suppressor cells, a group of immature neutrophils recently identified as mediators of vasculogenesis and metastasis, were recruited to the tumor in response to ELF5. Depletion of these cells using specific Ly6G antibodies prevented ELF5 from driving vasculogenesis and metastasis. Expression signatures in luminal A breast cancers indicated that increased myeloid cell invasion and inflammation were correlated with ELF5 expression, and increased ELF5 immunohistochemical staining predicted much shorter metastasis-free and overall survival of luminal A patients, defining a group who experienced unexpectedly early disease progression. Thus, in the MMTV-PyMT mouse mammary model, increased ELF5 levels drive metastasis by co-opting the innate immune system. As ELF5 has been previously implicated in the development of antiestrogen resistance, this finding implicates ELF5 as a defining factor in the acquisition of the key aspects of the lethal phenotype in luminal A breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias Pulmonares/secundário , Pulmão/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/fisiopatologia , Neoplasias da Mama/virologia , Permeabilidade Capilar , Proliferação de Células , Proteínas de Ligação a DNA , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hemorragia/etiologia , Hemorragia/prevenção & controle , Humanos , Leucócitos/imunologia , Leucócitos/patologia , Pulmão/irrigação sanguínea , Pulmão/imunologia , Pulmão/patologia , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/prevenção & controle , Depleção Linfocítica , Camundongos Transgênicos , Células Mieloides/imunologia , Células Mieloides/patologia , Proteínas de Neoplasias/genética , Neovascularização Patológica/etiologia , Neovascularização Patológica/prevenção & controle , Infiltração de Neutrófilos , Polyomavirus/patogenicidade , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sobrevida , Fatores de Transcrição , Carga Tumoral
20.
Oncotarget ; 5(18): 8651-64, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25261374

RESUMO

Cumulative exposure to estrogen (E) and progesterone (P) over the menstrual cycle significantly influences the risk of developing breast cancer. Despite the dogma that PR in the breast merely serves as a marker of an active estrogen receptor (ER), and as an inhibitor of the proliferative actions of E, it is now clear that in the breast P increases proliferation independently of E action. We show here that the progesterone receptor (PR) and ER are expressed in different epithelial populations, and target non-overlapping pathways in the normal human breast. In breast cancer, PR becomes highly correlated with ER, and this convergence is associated with signaling pathways predictive of disease metastasis. These data challenge the established paradigm that ER and PR function co-operatively in normal breast, and have significant implications not only for our understanding of normal breast biology, but also for diagnosis, prognosis and/or treatment options in breast cancer patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Carcinoma Intraductal não Infiltrante/metabolismo , Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Transdução de Sinais , Animais , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/mortalidade , Carcinoma Intraductal não Infiltrante/secundário , Estudos de Casos e Controles , Linhagem da Célula , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Estimativa de Kaplan-Meier , Glândulas Mamárias Humanas/patologia , Prognóstico , RNA Mensageiro/metabolismo , Receptor Cross-Talk , Receptores de Estrogênio/genética , Receptores de Progesterona/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA