Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nucleic Acids Res ; 52(13): 7414-7428, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38874502

RESUMO

Recent findings in cell biology have rekindled interest in Z-DNA, the left-handed helical form of DNA. We report here that two minimally modified nucleosides, 2'F-araC and 2'F-riboG, induce the formation of the Z-form under low ionic strength. We show that oligomers entirely made of these two nucleosides exclusively produce left-handed duplexes that bind to the Zα domain of ADAR1. The effect of the two nucleotides is so dramatic that Z-form duplexes are the only species observed in 10 mM sodium phosphate buffer and neutral pH, and no B-form is observed at any temperature. Hence, in contrast to other studies reporting formation of Z/B-form equilibria by a preference for purine glycosidic angles in syn, our NMR and computational work revealed that sequential 2'F…H2N and intramolecular 3'H…N3' interactions stabilize the left-handed helix. The equilibrium between B- and Z- forms is slow in the 19F NMR time scale (≥ms), and each conformation exhibited unprecedented chemical shift differences in the 19F signals. This observation led to a reliable estimation of the relative population of B and Z species and enabled us to monitor B-Z transitions under different conditions. The unique features of 2'F-modified DNA should thus be a valuable addition to existing techniques for specific detection of new Z-binding proteins and ligands.


Assuntos
DNA Forma Z , Conformação de Ácido Nucleico , DNA Forma Z/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Halogenação , Adenosina Desaminase/química , Adenosina Desaminase/metabolismo , Concentração Osmolar , Ressonância Magnética Nuclear Biomolecular , DNA de Forma B/química , Modelos Moleculares , DNA/química , DNA/metabolismo
2.
Angew Chem Int Ed Engl ; 63(18): e202401626, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38416546

RESUMO

Coenzyme B12 (AdoCbl; 5'-deoxy-5'-adenosylcobalamin), the quintessential biological organometallic radical catalyst, has a formerly unanticipated, yet extensive, role in photoregulation in bacteria. The light-responsive cobalt-corrin AdoCbl performs this nonenzymatic role by facilitating the assembly of CarH photoreceptors into DNA-binding tetramers in the dark, suppressing gene expression. Conversely, exposure to light triggers the decomposition of this AdoCbl-bound complex by a still elusive photochemical mechanism, activating gene expression. Here, we have examined AdoRhbl, the non-natural rhodium analogue of AdoCbl, as a photostable isostructural surrogate for AdoCbl. We show that AdoRhbl closely emulates AdoCbl in its uptake by bacterial cells and structural functionality as a regulatory ligand for CarH tetramerization, DNA binding, and repressor activity. Remarkably, we find AdoRhbl is photostable even when bound "base-off/His-on" to CarH in vitro and in vivo. Thus, AdoRhbl, an antivitamin B12, also represents an unprecedented anti-photoregulatory ligand, opening a pathway to precisely target biomimetic inhibition of AdoCbl-based photoregulation, with new possibilities for selective antibacterial applications. Computational biomolecular analysis of AdoRhbl binding to CarH yields detailed structural insights into this complex, which suggest that the adenosyl group of photoexcited AdoCbl bound to CarH may specifically undergo a concerted non-radical syn-1,2-elimination mechanism, an aspect not previously considered for this photoreceptor.


Assuntos
Fosfotreonina/análogos & derivados , Ródio , Ligantes , Cobamidas/química , Bactérias/metabolismo , DNA
3.
Nat Commun ; 14(1): 3318, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308482

RESUMO

p38α is a versatile protein kinase that can control numerous processes and plays important roles in the cellular responses to stress. Dysregulation of p38α signaling has been linked to several diseases including inflammation, immune disorders and cancer, suggesting that targeting p38α could be therapeutically beneficial. Over the last two decades, numerous p38α inhibitors have been developed, which showed promising effects in pre-clinical studies but results from clinical trials have been disappointing, fueling the interest in the generation of alternative mechanisms of p38α modulation. Here, we report the in silico identification of compounds that we refer to as non-canonical p38α inhibitors (NC-p38i). By combining biochemical and structural analyses, we show that NC-p38i efficiently inhibit p38α autophosphorylation but weakly affect the activity of the canonical pathway. Our results demonstrate how the structural plasticity of p38α can be leveraged to develop therapeutic opportunities targeting a subset of the functions regulated by this pathway.


Assuntos
Inflamação , Transdução de Sinais , Humanos , Fosforilação
4.
Nucleic Acids Res ; 51(10): 4713-4725, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37099382

RESUMO

Phosphorothioates (PS) have proven their effectiveness in the area of therapeutic oligonucleotides with applications spanning from cancer treatment to neurodegenerative disorders. Initially, PS substitution was introduced for the antisense oligonucleotides (PS ASOs) because it confers an increased nuclease resistance meanwhile ameliorates cellular uptake and in-vivo bioavailability. Thus, PS oligonucleotides have been elevated to a fundamental asset in the realm of gene silencing therapeutic methodologies. But, despite their wide use, little is known on the possibly different structural changes PS-substitutions may provoke in DNA·RNA hybrids. Additionally, scarce information and significant controversy exists on the role of phosphorothioate chirality in modulating PS properties. Here, through comprehensive computational investigations and experimental measurements, we shed light on the impact of PS chirality in DNA-based antisense oligonucleotides; how the different phosphorothioate diastereomers impact DNA topology, stability and flexibility to ultimately disclose pro-Sp S and pro-Rp S roles at the catalytic core of DNA Exonuclease and Human Ribonuclease H; two major obstacles in ASOs-based therapies. Altogether, our results provide full-atom and mechanistic insights on the structural aberrations PS-substitutions provoke and explain the origin of nuclease resistance PS-linkages confer to DNA·RNA hybrids; crucial information to improve current ASOs-based therapies.


Assuntos
Oligonucleotídeos Antissenso , Oligonucleotídeos Fosforotioatos , Humanos , Oligonucleotídeos Fosforotioatos/química , Oligonucleotídeos Antissenso/química , DNA , Transporte Biológico , Enxofre
5.
J Chem Inf Model ; 63(1): 321-334, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36576351

RESUMO

Mutations in the kinase domain of the epidermal growth factor receptor (EGFR) can be drivers of cancer and also trigger drug resistance in patients receiving chemotherapy treatment based on kinase inhibitors. A priori knowledge of the impact of EGFR variants on drug sensitivity would help to optimize chemotherapy and design new drugs that are effective against resistant variants before they emerge in clinical trials. To this end, we explored a variety of in silico methods, from sequence-based to "state-of-the-art" atomistic simulations. We did not find any sequence signal that can provide clues on when a drug-related mutation appears or the impact of such mutations on drug activity. Low-level simulation methods provide limited qualitative information on regions where mutations are likely to cause alterations in drug activity, and they can predict around 70% of the impact of mutations on drug efficiency. High-level simulations based on nonequilibrium alchemical free energy calculations show predictive power. The integration of these "state-of-the-art" methods into a workflow implementing an interface for parallel distribution of the calculations allows its automatic and high-throughput use, even for researchers with moderate experience in molecular simulations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Resistência a Medicamentos/genética , Receptores ErbB/metabolismo , Mutação , Resistencia a Medicamentos Antineoplásicos/genética
6.
Nat Commun ; 13(1): 7073, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400768

RESUMO

The binding of intrinsically disordered proteins to globular ones can require the folding of motifs into α-helices. These interactions offer opportunities for therapeutic intervention but their modulation with small molecules is challenging because they bury large surfaces. Linear peptides that display the residues that are key for binding can be targeted to globular proteins when they form stable helices, which in most cases requires their chemical modification. Here we present rules to design peptides that fold into single α-helices by instead concatenating glutamine side chain to main chain hydrogen bonds recently discovered in polyglutamine helices. The resulting peptides are uncharged, contain only natural amino acids, and their sequences can be optimized to interact with specific targets. Our results provide design rules to obtain single α-helices for a wide range of applications in protein engineering and drug design.


Assuntos
Glutamina , Peptídeos , Conformação Proteica em alfa-Hélice , Sequência de Aminoácidos , Estrutura Secundária de Proteína , Peptídeos/química
7.
Cell Rep ; 41(4): 111526, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288694

RESUMO

Tudor-interacting repair regulator (TIRR) is an RNA-binding protein and a negative regulator of the DNA-repair factor p53-binding protein 1 (53BP1). In non-damage conditions, TIRR is bound to 53BP1. After DNA damage, TIRR and 53BP1 dissociate, and 53BP1 binds the chromatin at the double-strand break (DSB) to promote non-homologous end joining (NHEJ)-mediated repair. However, the exact mechanistic details of this dissociation after damage are unknown. Increasing evidence has implicated RNA as a crucial factor in the DNA damage response (DDR). Here, we show that RNA can separate TIRR/53BP1. Specifically, RNA with a hairpin secondary structure, transcribed at the DSB by RNA polymerase II (RNAPII), promotes TIRR/53BP1 complex separation. This hairpin RNA binds to the same residues on TIRR as 53BP1. Our results uncover a role of DNA-damage-derived RNA in modulating a protein-protein interaction and contribute to our understanding of DSB repair.


Assuntos
Quebras de DNA de Cadeia Dupla , RNA , RNA/metabolismo , RNA Polimerase II/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ligação Proteica , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Reparo do DNA , Reparo do DNA por Junção de Extremidades , Cromatina , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , DNA/metabolismo
8.
Nat Med ; 26(7): 1063-1069, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483361

RESUMO

The mucosal epithelium is a common target of damage by chronic bacterial infections and the accompanying toxins, and most cancers originate from this tissue. We investigated whether colibactin, a potent genotoxin1 associated with certain strains of Escherichia coli2, creates a specific DNA-damage signature in infected human colorectal cells. Notably, the genomic contexts of colibactin-induced DNA double-strand breaks were enriched for an AT-rich hexameric sequence motif, associated with distinct DNA-shape characteristics. A survey of somatic mutations at colibactin target sites of several thousand cancer genomes revealed notable enrichment of this motif in colorectal cancers. Moreover, the exact double-strand-break loci corresponded with mutational hot spots in cancer genomes, reminiscent of a trinucleotide signature previously identified in healthy colorectal epithelial cells3. The present study provides evidence for the etiological role of colibactin in human cancer.


Assuntos
Neoplasias Colorretais/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Peptídeos/farmacologia , Policetídeos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Células Epiteliais/efeitos dos fármacos , Escherichia coli/patogenicidade , Humanos , Mutação/efeitos dos fármacos , Motivos de Nucleotídeos/efeitos dos fármacos
9.
Nucleic Acids Res ; 48(10): 5318-5331, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32356891

RESUMO

Intrinsically disordered proteins are crucial elements of chromatin heterogenous organization. While disorder in the histone tails enables a large variation of inter-nucleosome arrangements, disorder within the chromatin-binding proteins facilitates promiscuous binding to a wide range of different molecular targets, consistent with structural heterogeneity. Among the partially disordered chromatin-binding proteins, the H1 linker histone influences a myriad of chromatin characteristics including compaction, nucleosome spacing, transcription regulation, and the recruitment of other chromatin regulating proteins. Although it is now established that the long C-terminal domain (CTD) of H1 remains disordered upon nucleosome binding and that such disorder favours chromatin fluidity, the structural behaviour and thereby the role/function of the N-terminal domain (NTD) within chromatin is yet unresolved. On the basis of microsecond-long parallel-tempering metadynamics and temperature-replica exchange atomistic molecular dynamics simulations of different H1 NTD subtypes, we demonstrate that the NTD is completely unstructured in solution but undergoes an important disorder-to-order transition upon nucleosome binding: it forms a helix that enhances its DNA binding ability. Further, we show that the helical propensity of the H1 NTD is subtype-dependent and correlates with the experimentally observed binding affinity of H1 subtypes, suggesting an important functional implication of this disorder-to-order transition.


Assuntos
Histonas/química , Histonas/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , DNA/química , DNA/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Peptídeos/química , Ligação Proteica , Domínios Proteicos
10.
Mol Cell ; 78(3): 522-538.e9, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32220303

RESUMO

To understand the role of the extensive senescence-associated 3D genome reorganization, we generated genome-wide chromatin interaction maps, epigenome, replication-timing, whole-genome bisulfite sequencing, and gene expression profiles from cells entering replicative senescence (RS) or upon oncogene-induced senescence (OIS). We identify senescence-associated heterochromatin domains (SAHDs). Differential intra- versus inter-SAHD interactions lead to the formation of senescence-associated heterochromatin foci (SAHFs) in OIS but not in RS. This OIS-specific configuration brings active genes located in genomic regions adjacent to SAHDs in close spatial proximity and favors their expression. We also identify DNMT1 as a factor that induces SAHFs by promoting HMGA2 expression. Upon DNMT1 depletion, OIS cells transition to a 3D genome conformation akin to that of cells in replicative senescence. These data show how multi-omics and imaging can identify critical features of RS and OIS and discover determinants of acute senescence and SAHF formation.


Assuntos
Senescência Celular/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Genoma Humano , Oncogenes , Células Cultivadas , Montagem e Desmontagem da Cromatina/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Fibroblastos , Heterocromatina/genética , Humanos , Hibridização in Situ Fluorescente
11.
Acta Neuropathol ; 138(6): 1053-1074, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31428936

RESUMO

Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease.


Assuntos
Neoplasias Encefálicas/metabolismo , Epigênese Genética , Glioma/metabolismo , Metiltransferases/metabolismo , Proteínas Musculares/metabolismo , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Metilação de DNA , Humanos , Metiltransferases/genética , Camundongos Nus , Proteínas Musculares/genética , Transplante de Neoplasias , RNA Ribossômico 28S
12.
Nat Commun ; 10(1): 2034, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048691

RESUMO

Polyglutamine (polyQ) tracts are regions of low sequence complexity frequently found in transcription factors. Tract length often correlates with transcriptional activity and expansion beyond specific thresholds in certain human proteins is the cause of polyQ disorders. To study the structural basis of the association between tract length, transcriptional activity and disease, we addressed how the conformation of the polyQ tract of the androgen receptor, associated with spinobulbar muscular atrophy (SBMA), depends on its length. Here we report that this sequence folds into a helical structure stabilized by unconventional hydrogen bonds between glutamine side chains and main chain carbonyl groups, and that its helicity directly correlates with tract length. These unusual hydrogen bonds are bifurcate with the conventional hydrogen bonds stabilizing α-helices. Our findings suggest a plausible rationale for the association between polyQ tract length and androgen receptor transcriptional activity and have implications for establishing the mechanistic basis of SBMA.


Assuntos
Atrofia Bulboespinal Ligada ao X/genética , Peptídeos/química , Conformação Proteica em alfa-Hélice/genética , Receptores Androgênicos/química , Fatores de Transcrição/química , Atrofia Bulboespinal Ligada ao X/patologia , Dicroísmo Circular , Glutamina/química , Humanos , Hidrogênio/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Mutação , Agregados Proteicos/genética , Receptores Androgênicos/genética , Fatores de Transcrição/genética
13.
Cell ; 177(4): 881-895.e17, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31051106

RESUMO

Non-alcoholic fatty liver is the most common liver disease worldwide. Here, we show that the mitochondrial protein mitofusin 2 (Mfn2) protects against liver disease. Reduced Mfn2 expression was detected in liver biopsies from patients with non-alcoholic steatohepatitis (NASH). Moreover, reduced Mfn2 levels were detected in mouse models of steatosis or NASH, and its re-expression in a NASH mouse model ameliorated the disease. Liver-specific ablation of Mfn2 in mice provoked inflammation, triglyceride accumulation, fibrosis, and liver cancer. We demonstrate that Mfn2 binds phosphatidylserine (PS) and can specifically extract PS into membrane domains, favoring PS transfer to mitochondria and mitochondrial phosphatidylethanolamine (PE) synthesis. Consequently, hepatic Mfn2 deficiency reduces PS transfer and phospholipid synthesis, leading to endoplasmic reticulum (ER) stress and the development of a NASH-like phenotype and liver cancer. Ablation of Mfn2 in liver reveals that disruption of ER-mitochondrial PS transfer is a new mechanism involved in the development of liver disease.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas Mitocondriais/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfatidilserinas/metabolismo , Animais , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Inflamação/metabolismo , Fígado/patologia , Hepatopatias/etiologia , Hepatopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Cultura Primária de Células , Transporte Proteico/fisiologia , Transdução de Sinais , Triglicerídeos/metabolismo
14.
Proc Natl Acad Sci U S A ; 116(20): 10009-10018, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31028138

RESUMO

Epidermal growth factor receptor (EGFR) signaling is initiated by a large ligand-favored conformational change of the extracellular domain (ECD) from a closed, self-inhibited tethered monomer, to an open untethered state, which exposes a loop required for strong dimerization and activation. In glioblastomas (GBMs), structurally heterogeneous missense and deletion mutations concentrate at the ECD for unclear reasons. We explore the conformational impact of GBM missense mutations, combining elastic network models (ENMs) with multiple molecular dynamics (MD) trajectories. Our simulations reveal that the main missense class, located at the I-II interface away from the self-inhibitory tether, can unexpectedly favor spontaneous untethering to a compact intermediate state, here validated by small-angle X-ray scattering (SAXS). Significantly, such intermediate is characterized by the rotation of a large ECD fragment (N-TR1), deleted in the most common GBM mutation, EGFRvIII, and that makes accessible a cryptic epitope characteristic of cancer cells. This observation suggested potential structural equivalence of missense and deletion ECD changes in GBMs. Corroborating this hypothesis, our FACS, in vitro, and in vivo data demonstrate that entirely different ECD variants all converge to remove N-TR1 steric hindrance from the 806-epitope, which we show is allosterically coupled to an intermediate kinase and hallmarks increased oncogenicity. Finally, the detected extraintracellular coupling allows for synergistic cotargeting of the intermediate with mAb806 and inhibitors, which is proved herein.


Assuntos
Genes erbB-1 , Glioblastoma/genética , Epitopos , Células HEK293 , Humanos , Mutação de Sentido Incorreto
15.
Chem Commun (Camb) ; 55(6): 802-805, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30574643

RESUMO

Here we present 2shRNA, a shRNA-based nanobinder, which can simultaneously attack two therapeutic targets involved in drug resistance pathways and can additionally bind accessory molecules such as cell targeting peptides or fluorophores. We create 2shRNAs designed to specifically kill HER2+ breast cancer cells in the absence of a transfecting agent.


Assuntos
Nanoestruturas/química , RNA Interferente Pequeno/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Microscopia Confocal , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/uso terapêutico , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
16.
J Biol Chem ; 293(46): 17888-17905, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30262667

RESUMO

Newly discovered bacterial photoreceptors called CarH sense light by using 5'-deoxyadenosylcobalamin (AdoCbl). They repress their own expression and that of genes for carotenoid synthesis by binding in the dark to operator DNA as AdoCbl-bound tetramers, whose light-induced disassembly relieves repression. High-resolution structures of Thermus thermophilus CarHTt have provided snapshots of the dark and light states and have revealed a unique DNA-binding mode whereby only three of four DNA-binding domains contact an operator comprising three tandem direct repeats. To gain further insights into CarH photoreceptors and employing biochemical, spectroscopic, mutational, and computational analyses, here we investigated CarHBm from Bacillus megaterium We found that apoCarHBm, unlike monomeric apoCarHTt, is an oligomeric molten globule that forms DNA-binding tetramers in the dark only upon AdoCbl binding, which requires a conserved W-X9-EH motif. Light relieved DNA binding by disrupting CarHBm tetramers to dimers, rather than to monomers as with CarHTt CarHBm operators resembled that of CarHTt, but were larger by one repeat and overlapped with the -35 or -10 promoter elements. This design persisted in a six-repeat, multipartite operator we discovered upstream of a gene encoding an Spx global redox-response regulator whose photoregulated expression links photooxidative and general redox responses in B. megaterium Interestingly, CarHBm recognized the smaller CarHTt operator, revealing an adaptability possibly related to the linker bridging the DNA- and AdoCbl-binding domains. Our findings highlight a remarkable plasticity in the mode of action of B12-based CarH photoreceptors, important for their biological functions and development as optogenetic tools.


Assuntos
Proteínas de Bactérias/metabolismo , Cobamidas/metabolismo , DNA Bacteriano/metabolismo , Fotorreceptores Microbianos/metabolismo , Proteínas Repressoras/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Bacillus megaterium , Proteínas de Bactérias/genética , Sítios de Ligação , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Regiões Operadoras Genéticas , Fotorreceptores Microbianos/genética , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Proteínas Repressoras/genética , Raios Ultravioleta
17.
J Chem Inf Model ; 57(8): 2089-2098, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28763207

RESUMO

Combining computational modeling, de novo compound synthesis, and in vitro and cellular assays, we have performed an inhibition study against the enhancer of zeste homolog 2 (EZH2) histone-lysine N-methyltransferase. This enzyme is an important catalytic component of the PRC2 complex whose alterations have been associated with different cancers. We introduce here several tambjamine-inspired derivatives with low micromolar in vitro activity that produce a significant decrease in histone 3 trimethylation levels in cancer cells. We demonstrate binding at the methyl transfer active site, showing, in addition, that the EZH2 isolated crystal structure is capable of being used in molecular screening studies. Altogether, this work provides a successful molecular model that will help in the identification of new specific EZH2 inhibitors and identify a novel class of tambjamine-derived EZH2 inhibitors with promising activities for their use in cancer treatment.

18.
Mol Cell ; 68(4): 797-807.e7, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149600

RESUMO

DNA lesions caused by UV damage are thought to be repaired solely by the nucleotide excision repair (NER) pathway in human cells. Patients carrying mutations within genes functioning in this pathway display a range of pathologies, including an increased susceptibility to cancer, premature aging, and neurological defects. There are currently no curative therapies available. Here we performed a high-throughput chemical screen for agents that could alleviate the cellular sensitivity of NER-deficient cells to UV-induced DNA damage. This led to the identification of the clinically approved anti-diabetic drug acetohexamide, which promoted clearance of UV-induced DNA damage without the accumulation of chromosomal aberrations, hence promoting cellular survival. Acetohexamide exerted this protective function by antagonizing expression of the DNA glycosylase, MUTYH. Together, our data reveal the existence of an NER-independent mechanism to remove UV-induced DNA damage and prevent cell death.


Assuntos
Dano ao DNA , DNA Glicosilases/metabolismo , Reparo do DNA/efeitos da radiação , Raios Ultravioleta , Acetoexamida/farmacologia , Linhagem Celular Tumoral , DNA Glicosilases/biossíntese , DNA Glicosilases/genética , Reparo do DNA/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Humanos , Masculino
19.
Chem Commun (Camb) ; 53(19): 2870-2873, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28218319

RESUMO

Despite the broad applicability of the Huisgen cycloaddition reaction, the click functionalization of RNAs with peptides still remains a challenge. Here we describe a straightforward method for the click functionalization of siRNAs with peptides of different sizes and complexities. Among them, a promising peptide carrier for the selective siRNA delivery into HER2+ breast cancer cell lines has been reported.


Assuntos
Neoplasias da Mama/metabolismo , Peptídeos/química , Peptídeos/farmacocinética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacocinética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Química Click , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Feminino , Humanos , Conformação Molecular , Receptor ErbB-2/genética
20.
J Phys Chem Lett ; 8(6): 1105-1112, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28207277

RESUMO

Native electrospray ionization/ion mobility-mass spectrometry (ESI/IM-MS) allows an accurate determination of low-resolution structural features of proteins. Yet, the presence of proton dynamics, observed already by us for DNA in the gas phase, and its impact on protein structural determinants, have not been investigated so far. Here, we address this issue by a multistep simulation strategy on a pharmacologically relevant peptide, the N-terminal residues of amyloid-ß peptide (Aß(1-16)). Our calculations reproduce the experimental maximum charge state from ESI-MS and are also in fair agreement with collision cross section (CCS) data measured here by ESI/IM-MS. Although the main structural features are preserved, subtle conformational changes do take place in the first ∼0.1 ms of dynamics. In addition, intramolecular proton dynamics processes occur on the picosecond-time scale in the gas phase as emerging from quantum mechanics/molecular mechanics (QM/MM) simulations at the B3LYP level of theory. We conclude that proton transfer phenomena do occur frequently during fly time in ESI-MS experiments (typically on the millisecond time scale). However, the structural changes associated with the process do not significantly affect the structural determinants.


Assuntos
Proteínas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Simulação de Dinâmica Molecular , Peptídeos , Conformação Proteica , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA