Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(5): e0274364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37146029

RESUMO

Mesothelioma is characterised by its aggressive invasive behaviour, affecting the surrounding tissues of the pleura or peritoneum. We compared an invasive pleural model with a non-invasive subcutaneous model of mesothelioma and performed transcriptomic analyses on the tumour samples. Invasive pleural tumours were characterised by a transcriptomic signature enriched for genes associated with MEF2C and MYOCD signaling, muscle differentiation and myogenesis. Further analysis using the CMap and LINCS databases identified geldanamycin as a potential antagonist of this signature, so we evaluated its potential in vitro and in vivo. Nanomolar concentrations of geldanamycin significantly reduced cell growth, invasion, and migration in vitro. However, administration of geldanamycin in vivo did not result in significant anti-cancer activity. Our findings show that myogenesis and muscle differentiation pathways are upregulated in pleural mesothelioma which may be related to the invasive behaviour. However, geldanamycin as a single agent does not appear to be a viable treatment for mesothelioma.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Humanos , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Neoplasias Pleurais/patologia , Proliferação de Células , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
2.
Cell Rep ; 41(13): 111874, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36577370

RESUMO

While chemotherapy remains the first-line treatment for many cancers, it is still unclear what distinguishes responders from non-responders. Here, we characterize the chemotherapy-responsive tumor microenvironment in mice, using RNA sequencing on tumors before and after cyclophosphamide, and compare the gene expression profiles of responders with progressors. Responsive tumors have an inflammatory and highly immune infiltrated pre-treatment tumor microenvironment characterized by the enrichment of pathways associated with CD4+ T cells, interferons (IFNs), and tumor necrosis factor alpha (TNF-α). The same gene expression profile is associated with response to cyclophosphamide-based chemotherapy in patients with breast cancer. Finally, we demonstrate that tumors can be sensitized to cyclophosphamide and 5-FU chemotherapy by pre-treatment with recombinant TNF-α, IFNγ, and poly(I:C). Thus, a CD4+ T cell-inflamed pre-treatment tumor microenvironment is necessary for response to chemotherapy, and this state can be therapeutically attained by targeted immunotherapy.


Assuntos
Neoplasias , Linfócitos T , Animais , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Microambiente Tumoral , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Ciclofosfamida/metabolismo , Neoplasias/patologia , Linfócitos T CD4-Positivos/metabolismo
3.
iScience ; 25(1): 103571, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34984327

RESUMO

Mesothelioma is a cancer that typically originates in the pleura of the lungs. It rapidly invades the surrounding tissues, causing pain and shortness of breath. We compared cell lines injected either subcutaneously or intrapleurally and found that only the latter resulted in invasive and rapid growth. Pleural tumors displayed a transcriptional signature consistent with increased activity of nuclear receptors PPARα and PPARγ and with an increased abundance of endogenous PPAR-activating ligands. We found that chemical probe GW6471 is a potent, dual PPARα/γ antagonist with anti-invasive and anti-proliferative activity in vitro. However, administration of GW6471 at doses that provided sustained plasma exposure levels sufficient for inhibition of PPARα/γ transcriptional activity did not result in significant anti-mesothelioma activity in mice. Lastly, we demonstrate that the in vitro anti-tumor effect of GW6471 is off-target. We conclude that dual PPARα/γ antagonism alone is not a viable treatment modality for mesothelioma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA