Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 150: 107555, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38885548

RESUMO

The conventional approach to developing light-sensitive glycosidase activity regulators, involving the combination of a glycomimetic moiety and a photoactive azobenzene module, results in conjugates with differences in glycosidase inhibitory activity between the interchangeable E and Z-isomers at the azo group that are generally below one-order of magnitude. In this study, we have exploited the chemical mimic character of sp2-iminosugars to access photoswitchable p- and o-azobenzene α-O-glycosides based on the gluco-configured representative ONJ. Notably, we achieved remarkably high switching factors for glycosidase inhibition, favoring either the E- or Z-isomer depending on the aglycone structure. Our data also indicate a correlation between the isomeric state of the azobenzene module and the selectivity towards α- and ß-glucosidase isoenzymes. The most effective derivative reached over a 103-fold higher inhibitory potency towards human ß-glucocerebrosidase in the Z as compared with the E isomeric form. This sharp contrast is compatible with ex-vivo activation and programmed self-deactivation at physiological temperatures, positioning it as a prime candidate for pharmacological chaperone therapy in Gaucher disease. Additionally, our results illustrate that chemical tailoring enables the engineering of photocommutators with the ability to toggle inhibition between α- and ß-glucosidase enzymes in a reversible manner, thus expanding the versatility and potential therapeutic applications of this approach.


Assuntos
Compostos Azo , Inibidores Enzimáticos , Glicosídeo Hidrolases , Glicosídeos , Imino Açúcares , Humanos , Compostos Azo/química , Compostos Azo/farmacologia , Compostos Azo/síntese química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/metabolismo , Glicosídeos/química , Glicosídeos/farmacologia , Glicosídeos/síntese química , Imino Açúcares/química , Imino Açúcares/farmacologia , Imino Açúcares/síntese química , Luz , Estrutura Molecular , Relação Estrutura-Atividade , Glucosilceramidase/química , Glucosilceramidase/metabolismo , Glucosilceramidase/farmacologia
2.
J Med Chem ; 66(7): 4768-4783, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36958376

RESUMO

Glycolipids with TLR4 agonistic properties can serve either as therapeutic agents or as vaccine adjuvants by stimulating the development of proinflammatory responses. Translating them to the clinical setting is hampered by synthetic difficulties, the lack of stability in biological media, and/or a suboptimal profile of balanced immune mediator secretion. Here, we show that replacement of the sugar fragment by an sp2-iminosugar moiety in a prototypic TLR4 agonist, CCL-34, yields iminoglycolipid analogues that retain or improve their biological activity in vitro and in vivo and can be accessed through scalable protocols with total stereoselectivity. Their adjuvant potential is manifested in their ability to induce the secretion of proinflammatory cytokines, prime the maturation of dendritic cells, and promote the proliferation of CD8+ T cells, pertaining to a Th1-biased profile. Additionally, their therapeutic potential for the treatment of asthma, a Th2-dominated inflammatory pathology, has been confirmed in an ovalbumin-induced airway hyperreactivity mouse model.


Assuntos
Asma , Receptor 4 Toll-Like , Camundongos , Animais , Cisteína , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Asma/induzido quimicamente , Asma/tratamento farmacológico , Citocinas , Adjuvantes Farmacêuticos , Serina/farmacologia , Imunoterapia , Camundongos Endogâmicos BALB C , Ovalbumina , Células Th2
3.
J Am Chem Soc ; 144(2): 832-844, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985906

RESUMO

Owing to its roles in human health and disease, the modification of nuclear, cytoplasmic, and mitochondrial proteins with O-linked N-acetylglucosamine residues (O-GlcNAc) has emerged as a topic of great interest. Despite the presence of O-GlcNAc on hundreds of proteins within cells, only two enzymes regulate this modification. One of these enzymes is O-GlcNAcase (OGA), a dimeric glycoside hydrolase that has a deep active site cleft in which diverse substrates are accommodated. Chemical tools to control OGA are emerging as essential resources for helping to decode the biochemical and cellular functions of the O-GlcNAc pathway. Here we describe rationally designed bicyclic thiazolidine inhibitors that exhibit superb selectivity and picomolar inhibition of human OGA. Structures of these inhibitors in complex with human OGA reveal the basis for their exceptional potency and show that they extend out of the enzyme active site cleft. Leveraging this structure, we create a high affinity chemoproteomic probe that enables simple one-step purification of endogenous OGA from brain and targeted proteomic mapping of its post-translational modifications. These data uncover a range of new modifications, including some that are less-known, such as O-ubiquitination and N-formylation. We expect that these inhibitors and chemoproteomics probes will prove useful as fundamental tools to decipher the mechanisms by which OGA is regulated and directed to its diverse cellular substrates. Moreover, the inhibitors and structures described here lay out a blueprint that will enable the creation of chemical probes and tools to interrogate OGA and other carbohydrate active enzymes.


Assuntos
Antígenos de Neoplasias/metabolismo , Compostos Bicíclicos com Pontes/química , Inibidores Enzimáticos/química , Histona Acetiltransferases/metabolismo , Hialuronoglucosaminidase/metabolismo , Sequência de Aminoácidos , Encéfalo/metabolismo , Compostos Bicíclicos com Pontes/metabolismo , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/metabolismo , Histona Acetiltransferases/antagonistas & inibidores , Humanos , Hialuronoglucosaminidase/antagonistas & inibidores , Espectrometria de Massas , Peptídeos/análise , Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Relação Estrutura-Atividade , Tiazolidinas/química , Tiazolidinas/metabolismo , Cadeia alfa da beta-Hexosaminidase/antagonistas & inibidores , Cadeia alfa da beta-Hexosaminidase/metabolismo
4.
Molecules ; 26(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34946583

RESUMO

sp2-Iminosugar glycolipids (sp2-IGLs) represent a consolidated family of glycoconjugate mimetics encompassing a monosaccharide-like glycone moiety with a pseudoamide-type nitrogen replacing the endocyclic oxygen atom of carbohydrates and an axially-oriented lipid chain anchored at the pseudoanomeric position. The combination of these structural features makes them promising candidates for the treatment of a variety of conditions, spanning from cancer and inflammatory disorders to parasite infections. The exacerbated anomeric effect associated to the putative sp2-hybridized N-atom imparts chemical and enzymatic stability to sp2-IGLs and warrants total α-anomeric stereoselectivity in the key glycoconjugation step. A variety of O-, N-, C- and S-pseudoglycosides, differing in glycone configurational patterns and lipid nature, have been previously prepared and evaluated. Here we expand the chemical space of sp2-IGLs by reporting the synthesis of α-d-gluco-configured analogs with a bicyclic (5N,6O-oxomethylidene)nojirimycin (ONJ) core incorporating selenium at the glycosidic position. Structure-activity relationship studies in three different scenarios, namely cancer, Leishmaniasis and inflammation, convey that the therapeutic potential of the sp2-IGLs is highly dependent, not only on the length of the lipid chain (linear aliphatic C12 vs. C8), but also on the nature of the glycosidic atom (nitrogen vs. sulfur vs. selenium). The ensemble of results highlights the α-dodecylseleno-ONJ-glycoside as a promising multitarget drug candidate.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antineoplásicos/uso terapêutico , Antiprotozoários/uso terapêutico , Glicolipídeos/uso terapêutico , Neoplasias/tratamento farmacológico , Compostos Organosselênicos/uso terapêutico , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antiprotozoários/síntese química , Antiprotozoários/química , Glicolipídeos/síntese química , Glicolipídeos/química , Humanos , Inflamação/tratamento farmacológico , Leishmaniose/tratamento farmacológico , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química
5.
Int J Mol Sci ; 21(23)2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291321

RESUMO

Small interfering ribonucleic acid (siRNA) has the potential to revolutionize therapeutics since it can knockdown very efficiently the target protein. It is starting to be widely used to interfere with cell infection by HIV. However, naked siRNAs are unable to get into the cell, requiring the use of carriers to protect them from degradation and transporting them across the cell membrane. There is no information about which is the most efficient endocytosis route for high siRNA transfection efficiency. One of the most promising carriers to efficiently deliver siRNA are cyclodextrin derivatives. We have used nanocomplexes composed of siRNA and a ß-cyclodextrin derivative, AMC6, with a very high transfection efficiency to selectively knockdown clathrin heavy chain, caveolin 1, and p21 Activated Kinase 1 to specifically block clathrin-mediated, caveolin-mediated and macropinocytosis endocytic pathways. The main objective was to identify whether there is a preferential endocytic pathway associated with high siRNA transfection efficiency. We have found that macropinocytosis is the preferential entry pathway for the nanoparticle and its associated siRNA cargo. However, blockade of macropinocytosis does not affect AMC6-mediated transfection efficiency, suggesting that macropinocytosis blockade can be functionally compensated by an increase in clathrin- and caveolin-mediated endocytosis.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Nanopartículas/metabolismo , Pinocitose , RNA Interferente Pequeno/genética , Transfecção/métodos , Animais , Linhagem Celular Tumoral , Humanos , Nanopartículas/química , Ratos , beta-Ciclodextrinas/química
6.
J Med Chem ; 63(15): 8524-8533, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32672464

RESUMO

In many human carcinomas, mucin-1 (MUC1) is overexpressed and aberrantly glycosylated, resulting in the exposure of previously hidden antigens. This generates new patient antibody profiles that can be used in cancer diagnosis. In the present study, we focused on the MUC1-associated Tn antigen (α-O-GalNAc-Ser/Thr) and substituted the GalNAc monosaccharide by a glycomimic to identify MUC1-based glycopeptides with increased antigenicity. Two different glycopeptide libraries presenting the natural Tn antigen or the sp2-iminosugar analogue were synthesized and evaluated with anti-MUC1 monoclonal antibodies in a microarray platform. The most promising candidates were tested with healthy and breast cancer sera aiming for potential autoantibody-based biomarkers. The suitability of sp2-iminosugar glycopeptides to detect anti-MUC1 antibodies was demonstrated, and serological experiments showed stage I breast cancer autoantibodies binding with a specific unnatural glycopeptide with almost no healthy serum interaction. These results will promote further studies on their capabilities as early cancer biomarkers.


Assuntos
Antígenos Glicosídicos Associados a Tumores/imunologia , Autoanticorpos/imunologia , Neoplasias da Mama/imunologia , Mucina-1/imunologia , Antígenos Glicosídicos Associados a Tumores/química , Autoanticorpos/sangue , Neoplasias da Mama/sangue , Feminino , Glicômica , Humanos , Mucina-1/química , Biblioteca de Peptídeos
7.
Chem Commun (Camb) ; 55(85): 12845-12848, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31596280

RESUMO

Multivalent mannosides with inherent macrophage recognition abilities, built on ß-cyclodextrin, RAFT cyclopeptide or peptide dendrimer cores, trigger selective inhibition of lysosomal ß-glucocerebrosidase or α-mannosidase depending on valency and topology, offering new opportunities in multitargeted drug design.


Assuntos
Desenho de Fármacos , Manosídeos/química , Glucosilceramidase/antagonistas & inibidores , Lectinas/química , Macrófagos/metabolismo , Manosídeos/metabolismo , Peptídeos Cíclicos/química , alfa-Manosidase/antagonistas & inibidores , beta-Ciclodextrinas/química
8.
Molecules ; 24(16)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398901

RESUMO

The unique stereoelectronic properties of sp2-iminosugars enable their participation in glycosylation reactions, thereby behaving as true carbohydrate chemical mimics. Among sp2-iminosugar conjugates, the sp2-iminosugar glycolipids (sp2-IGLs) have shown a variety of interesting pharmacological properties ranging from glycosidase inhibition to antiproliferative, antiparasitic, and anti-inflammatory activities. Developing strategies compatible with molecular diversity-oriented strategies for structure-activity relationship studies was therefore highly wanted. Here we show that a reaction sequence consisting in stereoselective C-allylation followed by thiol-ene "click" coupling provides a very convenient access to α-C-glycoside sp2-IGLs. Both the glycone moiety and the aglycone tail can be modified by using sp2-iminosugar precursors with different configurational profiles (d-gluco or d-galacto in this work) and varied thiols, as well as by oxidation of the sulfide adducts (to the corresponding sulfones in this work). A series of derivatives was prepared in this manner and their glycosidase inhibitory, antiproliferative and antileishmanial activities were evaluated in different settings. The results confirm that the inhibition of glycosidases, particularly α-glucosidase, and the antitumor/leishmanicidal activities are unrelated. The data are also consistent with the two later activities arising from the ability of the sp2-IGLs to interfere in the immune system response in a cell line and cell context dependent manner.


Assuntos
Química Click , Glicolipídeos/síntese química , Glicolipídeos/farmacologia , Glicosídeos/química , Imino Açúcares/química , Compostos de Sulfidrila/química , Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicolipídeos/química , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/química , Humanos , Testes de Sensibilidade Parasitária
9.
Eur J Med Chem ; 182: 111604, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31425910

RESUMO

Immunomodulatory glycolipids, among which α-galactosylceramide (KRN7000) is an iconic example, have shown strong therapeutic potential in a variety of conditions ranging from cancer and infection to autoimmune or neurodegenerative diseases. A main difficulty for those channels is that they often provoke a cytokine storm comprising both pro- and anti-inflammatory mediators that antagonize each other and negatively affect the immune response. The synthesis of analogues with narrower cytokine secretion-inducing capabilities is hampered by the intrinsic difficulty at controlling the stereochemical outcome in glycosidation reactions, particularly if targeting the α-anomer, which seriously hampers drug optimization strategies. Here we show that replacing the monosaccharide glycone by a sp2-iminosugar glycomimetic moiety allows accessing N-linked sp2-iminosugar glycolipids (sp2-IGLs) with total α-stereocontrol in a single step with no need of protecting groups or glycosidation promotors. The lipid tail has been then readily tailored by incorporating polyfluoroalkyl segments of varied lengths in view of favouring binding to the lipid binding site of the master p38 mitogen activated protein kinase (p38 MAPK), thereby polarizing the immune response in a cell-context dependent manner. The compounds have been evaluated for their antiproliferative, anti-leishmanial and anti-inflammatory activities in different cell assays. The size of the fluorous segment was found to be critical for the biological activity, probably by regulating the aggregation and membrane-crossing properties, whereas the hydroxylation profile (gluco or galacto-like) was less relevant. Biochemical and computational data further support a mechanism of action implying binding to the allosteric lipid binding site of p38 MAPK and subsequent activation of the noncanonical autophosphorylation route. The ensemble of results provide a proof of concept of the potential of sp2-IGLs as immunoregulators.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antiprotozoários/síntese química , Antiprotozoários/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glicolipídeos/síntese química , Glicolipídeos/química , Glicolipídeos/farmacologia , Humanos , Imino Açúcares/síntese química , Imino Açúcares/química , Imino Açúcares/farmacologia , Fatores Imunológicos/síntese química , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Testes de Sensibilidade Parasitária , Fosforilação/efeitos dos fármacos , Relação Estrutura-Atividade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Front Pharmacol ; 8: 249, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533751

RESUMO

Giant amphiphiles encompassing a hydrophilic ß-cyclodextrin (ßCD) component and a hydrophobic calix[4]arene (CA4) module undergo self-assembly in aqueous media to afford core-shell nanospheres or nanocapsules, depending on the nanoprecipitation protocol, with high docetaxel (DTX) loading capacity. The blank and loaded nanoparticles have been fully characterized by dynamic light scattering (DLS), ζ-potential measurements and cryo-transmission electron microscopy (cryo-TEM). The data are compatible with the distribution of the drug between the nanoparticle core and the shell, where it is probably anchored by inclusion of the DTX aromatic moieties in ßCD cavities. Indeed, the release kinetics profiles evidenced an initial fast release of the drug, which likely accounts for the fraction hosted on the surface, followed by a slow and sustained release rate, corresponding to diffusion of DTX in the core, which can be finely tuned by modification of the giant amphiphile chemical structure. The ability of the docetaxel-loaded nanoparticles to induce cellular death in different prostate (human LnCap and PC3) and glioblastoma (human U87 and rat C6) cells was also explored. Giant amphiphile-based DTX formulations surpassing or matching the antitumoral activity of the free DTX formulation were identified in all cases with no need to employ any organic co-solvent, thus overcoming the DTX water solubility problems. Moreover, the presence of the ßCD shell at the surface of the assemblies is intended to impart stealth properties against serum proteins while permitting nanoparticle surface decoration by supramolecular approaches, paving the way for a new generation of molecularly well-defined antitumoral drug delivery systems with improved specificity and efficiency. Altogether, the results provide a proof of concept of the suitability of the approach based on ßCD-CA4 giant amphiphiles to access DTX carriers with tunable properties.

11.
J Cell Physiol ; 232(12): 3631-3640, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28145580

RESUMO

Aberrant glycosylation changes on many glycoproteins are often related to cancer progression and metastasis. sp2 -Iminosugar-type castanospermine analogues, inhibitors of α-glucosidases, have been reported to exhibit antitumor activity. However, their effects on cell migration and the underlying molecular mechanism are not fully understood. Here, we investigated the effect of the pseudo-C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives (CO-OCS) on breast cancer cells (MCF-7 and MDA-MB-231 cells), and MCF-10A mammary normal cell lines. We showed that CO-OCS treatment results in the drastic decrease of breast cancer cell migration without affecting cell proliferation. Furthermore, CO-OCS significantly reduced both the expression of ß1-integrin, which is a crucial interacting partner of Focal Adhesion Kinase (FAK), and the phosphorylation rates of FAK and ERK1/2. CO-OCS also drastically reduced Ca2+ entry through Store Operated Channels (SOC). Orai1 and Stim1, two N-glycosylated proteins, are involved in Store-Operated Calcium Entry (SOCE), and are essential for breast tumor cell migration. Our results showed that CO-OCS decreased the expression, at the protein level, of Stim1 without affecting that of Orai1. Moreover, cell migration and SOCE were attenuated by CO-OCS as well as when Stim1 was silenced. In contrast, in MCF-10A cells, CO-OCS slightly reduced cell migration, but was without effect on gene expression of Stim1, Orai1, ß1-integrin, or FAK and ERK1/2 activation. Our results provide strong evidence for a significant effect of CO-OCS on breast cancer cell migration and support that this effect was associated with ß1-integrin, Stim1, and FAK signaling pathways.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Quinase 1 de Adesão Focal/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Indolizinas/farmacocinética , Integrina beta1/metabolismo , Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Glicosilação , Humanos , Células MCF-7 , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Molécula 1 de Interação Estromal/genética , Fatores de Tempo , Transfecção
12.
J Pharm Sci ; 105(10): 3172-3182, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27488900

RESUMO

Amphiphilic cyclodextrins (CDs) are biocompatible derivatives of natural CDs and are able to form nanoparticles or polyplexes spontaneously. In this study, nanoparticles prepared from nonionic (6OCaproßCD) or cationic amphiphilic CD (PC ßCDC6) were used comparatively to develop nanoparticles intended for breast cancer therapy. The characterization of these nanoparticles was performed both by in vitro and cell culture studies. Furthermore, the apoptotic and cytotoxic effects of blank amphiphilic CDs were demonstrated by various mechanistic methods including Caspase-8 activity, lipid peroxidation assay, TUNEL assay, Tali(®)-based image analysis, cholesterol assay, and gene expression studies. Blank nanoparticles exerted cytotoxicity against a variety of cancer cells (MCF-7, HeLa, HepG2, and MB49) but none to healthy cells (L929, G/G). Interestingly, blank 6OCaproßCD and blank PC ßCDC6 derivatives were found to be intrinsically effective on cell number and membrane integrity of MCF-7 cells in apoptosis studies. Further in-depth studies were performed to elucidate the selective mechanism of anticancer action in MCF-7 cells caused by these amphiphilic CDs. In conclusion, blank amphiphilic CD nanoparticles induced apoptosis through mitochondrial pathway targeted to cholesterol microdomains in cancer cell membrane.


Assuntos
Antineoplásicos/administração & dosagem , Colesterol , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Poliaminas/administração & dosagem , Tensoativos/administração & dosagem , Animais , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Colesterol/metabolismo , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Camundongos , Nanopartículas/metabolismo , Poliaminas/metabolismo , Polieletrólitos , Tensoativos/metabolismo
13.
Carbohydr Res ; 429: 113-22, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26850915

RESUMO

The synthesis of a complete series of cyclic carbamate-type sp(2)-iminosugar N-, S-, O- and C-octyl pseudoglycosides related to nojirimycin, mannojirimycin and galactonojirimycin, all having the α-pseudoanomeric configuration, is reported. The gem-diamine-type N-pseudoglycosides can be accessed directly from the corresponding reducing sp(2)-imisosugar precursors by reaction with octylamine in methanol, whereas per-O-acetyl or 1-fluoro derivatives were used as pseudoglycosyl donors for the preparation of S-pseudoglycosides or O- and C-pseudoglycosides, respectively. Evaluation of their inhibitory properties against a panel of glycosidases evidenced selectivity profiles that strongly depend on the configurational pattern and the nature of the glycosidic linkage. On the contrary, the antiproliferative activity determined against a panel of tumor cell lines was largely independent of the relative orientation of the hydroxyl groups in the sp(2)-iminosugar moiety. Indeed, sp(2)-iminosugar representatives exhibiting significant growth inhibition potencies were identified in all three configurationally different types of compounds studied, namely α-d-gluco, α-d-manno and α-d-galacto glycoside analogs. Interestingly, none of the compounds affected viability and mortality of normal cells at the used concentrations. Altogether, the results strongly suggest that the anticancer activity of amphiphilic sp(2)-iminosugar glycosides might be unrelated, or not solely related, to their glycosidase inhibitory activity.


Assuntos
Antineoplásicos/síntese química , Inibidores Enzimáticos/síntese química , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeos/síntese química , Imino Açúcares/síntese química , Aminas/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Galactose/análogos & derivados , Glucose/análogos & derivados , Glicosídeo Hidrolases/química , Glicosídeos/farmacologia , Humanos , Imino Açúcares/farmacologia , Concentração Inibidora 50 , Manose/análogos & derivados , Metanol/química , Especificidade de Órgãos , Relação Estrutura-Atividade
14.
Nanoscale ; 7(6): 2325-35, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25559389

RESUMO

Recent advances in nanotechnology have seen the development of a number of microbiocidal and/or anti-adhesive nanoparticles displaying activity against biofilms. In this work, trimeric thiomannoside clusters conjugated to nanodiamond particles (ND) were targeted for investigation. NDs have attracted attention as a biocompatible nanomaterial and we were curious to see whether the high mannose glycotope density obtained upon grouping monosaccharide units in triads might lead to the corresponding ND-conjugates behaving as effective inhibitors of E. coli type 1 fimbriae-mediated adhesion as well as of biofilm formation. The required trimeric thiosugar clusters were obtained through a convenient thiol-ene "click" strategy and were subsequently conjugated to alkynyl-functionalized NDs using a Cu(I)-catalysed "click" reaction. We demonstrated that the tri-thiomannoside cluster-conjugated NDs (ND-Man3) show potent inhibition of type 1 fimbriae-mediated E. coli adhesion to yeast and T24 bladder cells as well as of biofilm formation. The biofilm disrupting effects demonstrated here have only rarely been reported in the past for analogues featuring such simple glycosidic motifs. Moreover, the finding that the tri-thiomannoside cluster (Man3N3) is itself a relatively efficient inhibitor, even when not conjugated to any ND edifice, suggests that alternative mono- or multivalent sugar-derived analogues might also be usefully explored for E. coli-mediated biofilm disrupting properties.


Assuntos
Biofilmes , Diamante/química , Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Manosídeos/química , Nanopartículas/química , Aderência Bacteriana , Materiais Biocompatíveis/química , Carboidratos/química , Linhagem Celular Tumoral , Cromatografia em Camada Fina , Dimerização , Glicosídeos/química , Proteínas de Fluorescência Verde/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Nanoconjugados , Nanotecnologia , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Solventes/química
15.
Org Biomol Chem ; 13(6): 1708-23, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25474077

RESUMO

Multi-head/multi-tail facial amphiphiles built on cyclodextrin (CD) and calixarene (CA) scaffolds are paradigmatic examples of monodisperse gene delivery systems. The possibility to precisely control the architectural features at the molecular level offers unprecedented opportunities for conducting structure-activity relationship studies. A major requirement for those channels is the design of a sufficiently diverse ensemble of compounds for parallel evaluation of their capabilities to condense DNA into transfection nanoparticles where the gene material is protected from the environment. Here we have undertaken the preparation of an oriented library of ß-cyclodextrin (ßCD) and calix[4]arene (CA4) vectors with facial amphiphilic character designed to ascertain the effect of the cationic head nature (aminothiourea-, arginine- or guanidine-type groups) and the macrocyclic platform on the abilities to complex plasmid DNA (pDNA) and in the efficiency of the resulting nanocomplexes to transfect cells in vitro. The hydrophobic domain, formed by hexanoyl or hexyl chains, remains constant in each series, matching the overall structure found to be optimal in previous studies. DLS, TEM and AFM data support that all the compounds self-assemble in the presence of pDNA through a process that involves initially electrostatic interactions followed by formation of ßCD or CA4 bilayers between the oligonucleotide filaments. Spherical transfectious nanoparticles that are monomolecular in DNA are thus obtained. Evaluation in epithelial COS-7 and human rhabdomyosarcoma RD-4 cells evidenced the importance of having primary amino groups in the vector to warrant high levels of transfection, probably because of their buffering capacity. The results indicate that the optimal cationic head depends on the macrocyclic core, aminothiourea groups being preferred in the ßCD series and arginine groups in the CA4 series. Whereas the transfection efficiency relationships remain essentially unchanged within each series, irrespective of the cell type, the optimal platform (ßD or CA4) strongly depends on the cell type. The results illustrate the potential of monodisperse vector prototypes and diversity-oriented strategies on identifying the optimal candidates for gene therapy applications.


Assuntos
Calixarenos/química , Ciclodextrinas/química , Técnicas de Transferência de Genes , Polímeros/química , Tensoativos/química , Animais , Células COS , Cátions/síntese química , Cátions/química , Linhagem Celular Tumoral , Sobrevivência Celular , Chlorocebus aethiops , Humanos , Polímeros/síntese química , Relação Estrutura-Atividade , Tensoativos/síntese química
16.
J Med Chem ; 57(21): 9105-23, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25268544

RESUMO

An increasing number of pathologies have been linked to Toll-like receptor 4 (TLR4) activation and signaling, therefore new hit and lead compounds targeting this receptor activation process are urgently needed. We report on the synthesis and biological properties of glycolipids based on glucose and trehalose scaffolds which potently inhibit TLR4 activation and signaling in vitro and in vivo. Structure-activity relationship studies on these compounds indicate that the presence of fatty ester chains in the molecule is a primary prerequisite for biological activity and point to facial amphiphilicity as a preferred architecture for TLR4 antagonism. The cationic glycolipids here presented can be considered as new lead compounds for the development of drugs targeting TLR4 activation and signaling in infectious, inflammatory, and autoimmune diseases. Interestingly, the biological activity of the best drug candidate was retained after adsorption at the surface of colloidal gold nanoparticles, broadening the options for clinical development.


Assuntos
Glucose/análogos & derivados , Glicolipídeos/síntese química , Tensoativos/síntese química , Receptor 4 Toll-Like/metabolismo , Trealose/análogos & derivados , Animais , Endotoxinas/antagonistas & inibidores , Glicolipídeos/farmacologia , Células HEK293/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/química , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Tensoativos/farmacologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/antagonistas & inibidores
17.
Chem Commun (Camb) ; 50(56): 7440-3, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24875493

RESUMO

Stable core-shell nanospheres self-assemble in water from heterodimers combining a hydrophobic calix[4]arene moiety and a hydrophilic ß-cyclodextrin head; their potential to encapsulate and provide sustained release of the anticancer drug docetaxel and undergo surface post-modification with glycoligands targeting the macrophage mannose receptor is discussed.


Assuntos
Calixarenos/química , Ciclodextrinas/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanosferas/química , Calixarenos/farmacocinética , Ciclodextrinas/farmacocinética , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/tendências , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Nanosferas/metabolismo
18.
Org Biomol Chem ; 12(14): 2289-301, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24589885

RESUMO

Gaucher disease (GD) is a rare monogenetic disorder leading to dysfunction of acid ß-glucosidase (ß-glucocerebrosidase; GCase) and accumulation of glucosylceramide in lysosomes, especially in macrophages (Gaucher cells). Many of the mutations at the origin of GD do not impair the catalytic activity of GCase, but cause misfolding and subsequent degradation by the quality control system at the endoplasmic reticulum. Pharmacological chaperones (PCs) capable of restoring the correct folding and trafficking of the endogenous mutant enzyme represent promising alternatives to the currently available enzyme replacement and substrate reduction therapies (ERT and SRT, respectively), but unfavorable biodistribution and potential side-effects remain important issues. We have now designed a strategy to enhance the controlled delivery of PCs to macrophages that exploit the formation of ternary complexes between the PC, a trivalent mannosylated ß-cyclodextrin (ßCD) conjugate and the macrophage mannose receptor (MMR). First, PC candidates with appropriate relative avidities towards the ßCD cavity and the GCase active site were selected to ensure efficient transfer of the PC cargo from the host to the GCase active site. Control experiments confirmed that the ßCD carrier was selectively recognized by mannose-specific lectins and that the corresponding PC:mannosylated ßCD supramolecular complex retained both the chaperoning activity, as confirmed in human GD fibroblasts, and the MMR binding ability. Finally, fluorescence microscopy techniques proved targeting and cellular uptake of the PC-loaded system in macrophages. Altogether, the results support that combined cyclodextrin encapsulation and glycotargeting may improve the efficacy of PCs for GD.


Assuntos
Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Doença de Gaucher/tratamento farmacológico , Macrófagos/metabolismo , Chaperonas Moleculares/administração & dosagem , beta-Ciclodextrinas/química , Configuração de Carboidratos , Doença de Gaucher/patologia , Humanos , Macrófagos/efeitos dos fármacos , Microscopia de Fluorescência , Chaperonas Moleculares/farmacologia , Chaperonas Moleculares/uso terapêutico , beta-Ciclodextrinas/administração & dosagem
19.
Chem Commun (Camb) ; 50(25): 3350-2, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24535213

RESUMO

Biomimetic nanoparticles prepared by self-assembly of iminosugar-based glycopolypeptides evidenced remarkable multivalency properties when inhibiting α-mannosidase activity. This approach paves the way to obtain biologically active drug delivery systems having glycosidase inhibition potency.


Assuntos
1-Desoxinojirimicina/química , Glicopeptídeos/química , Glicosídeo Hidrolases/antagonistas & inibidores , Nanopartículas/química , Peptídeos/química , 1-Desoxinojirimicina/análogos & derivados , Sistemas de Liberação de Medicamentos , Glicoproteínas/química , Ligantes , Micelas
20.
PLoS One ; 8(10): e76411, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24124558

RESUMO

sp²-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231 cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4), cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21(Waf1/Cip1). In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Indolizinas/farmacologia , Neoplasias da Mama/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA