Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cancer Imaging ; 24(1): 24, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331808

RESUMO

BACKGROUND: To build machine learning predictive models for surgical risk assessment of extracapsular extension (ECE) in patients with prostate cancer (PCa) before radical prostatectomy; and to compare the use of decision curve analysis (DCA) and receiver operating characteristic (ROC) metrics for selecting input feature combinations in models. METHODS: This retrospective observational study included two independent data sets: 139 participants from a single institution (training), and 55 from 15 other institutions (external validation), both treated with Robotic Assisted Radical Prostatectomy (RARP). Five ML models, based on different combinations of clinical, semantic (interpreted by a radiologist) and radiomics features computed from T2W-MRI images, were built to predict extracapsular extension in the prostatectomy specimen (pECE+). DCA plots were used to rank the models' net benefit when assigning patients to prostatectomy with non-nerve-sparing surgery (NNSS) or nerve-sparing surgery (NSS), depending on the predicted ECE status. DCA model rankings were compared with those drived from ROC area under the curve (AUC). RESULTS: In the training data, the model using clinical, semantic, and radiomics features gave the highest net benefit values across relevant threshold probabilities, and similar decision curve was observed in the external validation data. The model ranking using the AUC was different in the discovery group and favoured the model using clinical + semantic features only. CONCLUSIONS: The combined model based on clinical, semantic and radiomic features may be used to predict pECE + in patients with PCa and results in a positive net benefit when used to choose between prostatectomy with NNS or NNSS.


Assuntos
Extensão Extranodal , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia , Prostatectomia/métodos , Estudos Retrospectivos , Aprendizado de Máquina
2.
Eur Radiol ; 34(4): 2457-2467, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37776361

RESUMO

OBJECTIVES: Diffusion-weighted imaging (DWI) with simultaneous multi-slice (SMS) acquisition and advanced processing can accelerate acquisition time and improve MR image quality. This study evaluated the image quality and apparent diffusion coefficient (ADC) measurements of free-breathing DWI acquired from patients with liver metastases using a prototype SMS-DWI acquisition (with/without an advanced processing option) and conventional DWI. METHODS: Four DWI schemes were compared in a pilot 5-patient cohort; three DWI schemes were further assessed in a 24-patient cohort. Two readers scored image quality of all b-value images and ADC maps across the three methods. ADC measurements were performed, for all three methods, in left and right liver parenchyma, spleen, and liver metastases. The Friedman non-parametric test (post-hoc Wilcoxon test with Bonferroni correction) was used to compare image quality scoring; t-test was used for ADC comparisons. RESULTS: SMS-DWI was faster (by 24%) than conventional DWI. Both readers scored the SMS-DWI with advanced processing as having the best image quality for highest b-value images (b750) and ADC maps; Cohen's kappa inter-reader agreement was 0.6 for b750 image and 0.56 for ADC maps. The prototype SMS-DWI sequence with advanced processing allowed a better visualization of the left lobe of the liver. ADC measured in liver parenchyma, spleen, and liver metastases using the SMS-DWI with advanced processing option showed lower values than those derived from the SMS-DWI method alone (t-test, p < 0.0001; p < 0.0001; p = 0.002). CONCLUSIONS: Free-breathing SMS-DWI with advanced processing was faster and demonstrated better image quality versus a conventional DWI protocol in liver patients. CLINICAL RELEVANCE STATEMENT: Free-breathing simultaneous multi-slice- diffusion-weighted imaging (DWI) with advanced processing was faster and demonstrated better image quality versus a conventional DWI protocol in liver patients. KEY POINTS: • Diffusion-weighted imaging (DWI) with simultaneous multi-slice (SMS) can accelerate acquisition time and improve image quality. • Apparent diffusion coefficients (ADC) measured in liver parenchyma, spleen, and liver metastases using the simultaneous multi-slice DWI with advanced processing were significantly lower than those derived from the simultaneous multi-slice DWI method alone. • Simultaneous multi-slice DWI sequence with inline advanced processing was faster and demonstrated better image quality in liver patients.


Assuntos
Neoplasias Hepáticas , Respiração , Humanos , Reprodutibilidade dos Testes , Neoplasias Hepáticas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos
3.
Lancet Oncol ; 24(11): 1277-1286, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37922931

RESUMO

BACKGROUND: Retroperitoneal sarcomas are tumours with a poor prognosis. Upfront characterisation of the tumour is difficult, and under-grading is common. Radiomics has the potential to non-invasively characterise the so-called radiological phenotype of tumours. We aimed to develop and independently validate a CT-based radiomics classification model for the prediction of histological type and grade in retroperitoneal leiomyosarcoma and liposarcoma. METHODS: A retrospective discovery cohort was collated at our centre (Royal Marsden Hospital, London, UK) and an independent validation cohort comprising patients recruited in the phase 3 STRASS study of neoadjuvant radiotherapy in retroperitoneal sarcoma. Patients aged older than 18 years with confirmed primary leiomyosarcoma or liposarcoma proceeding to surgical resection with available contrast-enhanced CT scans were included. Using the discovery dataset, a CT-based radiomics workflow was developed, including manual delineation, sub-segmentation, feature extraction, and predictive model building. Separate probabilistic classifiers for the prediction of histological type and low versus intermediate or high grade tumour types were built and tested. Independent validation was then performed. The primary objective of the study was to develop radiomic classification models for the prediction of retroperitoneal leiomyosarcoma and liposarcoma type and histological grade. FINDINGS: 170 patients recruited between Oct 30, 2016, and Dec 23, 2020, were eligible in the discovery cohort and 89 patients recruited between Jan 18, 2012, and April 10, 2017, were eligible in the validation cohort. In the discovery cohort, the median age was 63 years (range 27-89), with 83 (49%) female and 87 (51%) male patients. In the validation cohort, median age was 59 years (range 33-77), with 46 (52%) female and 43 (48%) male patients. The highest performing model for the prediction of histological type had an area under the receiver operator curve (AUROC) of 0·928 on validation, based on a feature set of radiomics and approximate radiomic volume fraction. The highest performing model for the prediction of histological grade had an AUROC of 0·882 on validation, based on a radiomics feature set. INTERPRETATION: Our validated radiomics model can predict the histological type and grade of retroperitoneal sarcomas with excellent performance. This could have important implications for improving diagnosis and risk stratification in retroperitoneal sarcomas. FUNDING: Wellcome Trust, European Organisation for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group, the National Institutes for Health, and the National Institute for Health and Care Research Biomedical Research Centre at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research.


Assuntos
Leiomiossarcoma , Lipossarcoma , Neoplasias Retroperitoneais , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Masculino , Feminino , Idoso , Adulto , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Leiomiossarcoma/patologia , Estudos Retrospectivos , Sarcoma/patologia , Lipossarcoma/diagnóstico por imagem , Lipossarcoma/patologia , Neoplasias de Tecidos Moles/patologia , Neoplasias Retroperitoneais/patologia , Tomografia Computadorizada por Raios X
4.
Cancer Imaging ; 23(1): 76, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580840

RESUMO

BACKGROUND: The aim of this work is to evaluate the performance of radiomics predictions for a range of molecular, genomic and clinical targets in patients with clear cell renal cell carcinoma (ccRCC) and demonstrate the impact of novel feature selection strategies and sub-segmentations on model interpretability. METHODS: Contrast-enhanced CT scans from the first 101 patients recruited to the TRACERx Renal Cancer study (NCT03226886) were used to derive radiomics classification models to predict 20 molecular, histopathology and clinical target variables. Manual 3D segmentation was used in conjunction with automatic sub-segmentation to generate radiomics features from the core, rim, high and low enhancing sub-regions, and the whole tumour. Comparisons were made between two classification model pipelines: a Conventional pipeline reflecting common radiomics practice, and a Proposed pipeline including two novel feature selection steps designed to improve model interpretability. For both pipelines nested cross-validation was used to estimate prediction performance and tune model hyper-parameters, and permutation testing was used to evaluate the statistical significance of the estimated performance measures. Further model robustness assessments were conducted by evaluating model variability across the cross-validation folds. RESULTS: Classification performance was significant (p < 0.05, H0:AUROC = 0.5) for 11 of 20 targets using either pipeline and for these targets the AUROCs were within ± 0.05 for the two pipelines, except for one target where the Proposed pipeline performance increased by > 0.1. Five of these targets (necrosis on histology, presence of renal vein invasion, overall histological stage, linear evolutionary subtype and loss of 9p21.3 somatic alteration marker) had AUROC > 0.8. Models derived using the Proposed pipeline contained fewer feature groups than the Conventional pipeline, leading to more straightforward model interpretations without loss of performance. Sub-segmentations lead to improved performance and/or improved interpretability when predicting the presence of sarcomatoid differentiation and tumour stage. CONCLUSIONS: Use of the Proposed pipeline, which includes the novel feature selection methods, leads to more interpretable models without compromising prediction performance. TRIAL REGISTRATION: NCT03226886 (TRACERx Renal).


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Diagnóstico Diferencial , Neoplasias Renais/patologia , Cintilografia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
5.
Front Oncol ; 12: 899180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35924167

RESUMO

Background: Size-based assessments are inaccurate indicators of tumor response in soft-tissue sarcoma (STS), motivating the requirement for new response imaging biomarkers for this rare and heterogeneous disease. In this study, we assess the test-retest repeatability of radiomic features from MR diffusion-weighted imaging (DWI) and derived maps of apparent diffusion coefficient (ADC) in retroperitoneal STS and compare baseline repeatability with changes in radiomic features following radiotherapy (RT). Materials and Methods: Thirty patients with retroperitoneal STS received an MR examination prior to treatment, of whom 23/30 were investigated in our repeatability analysis having received repeat baseline examinations and 14/30 patients were investigated in our post-treatment analysis having received an MR examination after completing pre-operative RT. One hundred and seven radiomic features were extracted from the full manually delineated tumor region using PyRadiomics. Test-retest repeatability was assessed using an intraclass correlation coefficient (baseline ICC), and post-radiotherapy variance analysis (post-RT-IMS) was used to compare the change in radiomic feature value to baseline repeatability. Results: For the ADC maps and DWI images, 101 and 102 features demonstrated good baseline repeatability (baseline ICC > 0.85), respectively. Forty-three and 2 features demonstrated both good baseline repeatability and a high post-RT-IMS (>0.85), respectively. Pearson correlation between the baseline ICC and post-RT-IMS was weak (0.432 and 0.133, respectively). Conclusions: The ADC-based radiomic analysis shows better test-retest repeatability compared with features derived from DWI images in STS, and some of these features are sensitive to post-treatment change. However, good repeatability at baseline does not imply sensitivity to post-treatment change.

6.
Med Image Anal ; 80: 102512, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35709559

RESUMO

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is an MRI technique for quantifying perfusion that can be used in clinical applications for classification of tumours and other types of diseases. Conventionally, the non-linear least squares (NLLS) methods is used for tracer-kinetic modelling of DCE data. However, despite promising results, NLLS suffers from long processing times (minutes-hours) and noisy parameter maps due to the non-convexity of the cost function. In this work, we investigated physics-informed deep neural networks for estimating physiological parameters from DCE-MRI signal-curves. Three voxel-wise temporal frameworks (FCN, LSTM, GRU) and two spatio-temporal frameworks (CNN, U-Net) were investigated. The accuracy and precision of parameter estimation by the temporal frameworks were evaluated in simulations. All networks showed higher precision than the NLLS. Specifically, the GRU showed to decrease the random error on ve by a factor of 4.8 with respect to the NLLS for noise (SD) of 1/20. The accuracy was better for the prediction of the ve parameter in all networks compared to the NLLS. The GRU and LSTM worked with arbitrary acquisition lengths. The GRU was selected for in vivo evaluation and compared to the spatio-temporal frameworks in 28 patients with pancreatic cancer. All neural network approaches showed less noisy parameter maps than the NLLS. The GRU had better test-retest repeatability than the NLLS for all three parameters and was able to detect one additional patient with significant changes in DCE parameters post chemo-radiotherapy. Although the U-Net and CNN had even better test-retest characteristics than the GRU, and were able to detect even more responders, they also showed potential systematic errors in the parameter maps. Therefore, we advise using our GRU framework for analysing DCE data.


Assuntos
Aprendizado Profundo , Neoplasias Pancreáticas , Algoritmos , Meios de Contraste , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias Pancreáticas/diagnóstico por imagem
7.
Nat Ecol Evol ; 6(1): 88-102, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34949820

RESUMO

Genetic intra-tumour heterogeneity fuels clonal evolution, but our understanding of clinically relevant clonal dynamics remain limited. We investigated spatial and temporal features of clonal diversification in clear cell renal cell carcinoma through a combination of modelling and real tumour analysis. We observe that the mode of tumour growth, surface or volume, impacts the extent of subclonal diversification, enabling interpretation of clonal diversity in patient tumours. Specific patterns of proliferation and necrosis explain clonal expansion and emergence of parallel evolution and microdiversity in tumours. In silico time-course studies reveal the appearance of budding structures before detectable subclonal diversification. Intriguingly, we observe radiological evidence of budding structures in early-stage clear cell renal cell carcinoma, indicating that future clonal evolution may be predictable from imaging. Our findings offer a window into the temporal and spatial features of clinically relevant clonal evolution.


Assuntos
Neoplasias , Evolução Clonal , Humanos
8.
Cancer Imaging ; 21(1): 67, 2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34924031

RESUMO

BACKGROUND: Diffusion weighted imaging (DWI) with intravoxel incoherent motion (IVIM) modelling can inform on tissue perfusion without exogenous contrast administration. Dynamic-contrast-enhanced (DCE) MRI can also characterise tissue perfusion, but requires a bolus injection of a Gadolinium-based contrast agent. This study compares the use of DCE-MRI and IVIM-DWI methods in assessing response to anti-angiogenic treatment in patients with colorectal liver metastases in a cohort with confirmed treatment response. METHODS: This prospective imaging study enrolled 25 participants with colorectal liver metastases to receive Regorafenib treatment. A target metastasis > 2 cm in each patient was imaged before and at 15 days after treatment on a 1.5T MR scanner using slice-matched IVIM-DWI and DCE-MRI protocols. MRI data were motion-corrected and tumour volumes of interest drawn on b=900 s/mm2 diffusion-weighted images were transferred to DCE-MRI data for further analysis. The median value of four IVIM-DWI parameters [diffusion coefficient D (10-3 mm2/s), perfusion fraction f (ml/ml), pseudodiffusion coefficient D* (10-3 mm2/s), and their product fD* (mm2/s)] and three DCE-MRI parameters [volume transfer constant Ktrans (min-1), enhancement fraction EF (%), and their product KEF (min-1)] were recorded at each visit, before and after treatment. Changes in pre- and post-treatment measurements of all MR parameters were assessed using Wilcoxon signed-rank tests (P<0.05 was considered significant). DCE-MRI and IVIM-DWI parameter correlations were evaluated with Spearman rank tests. Functional MR parameters were also compared against Response Evaluation Criteria In Solid Tumours v.1.1 (RECIST) evaluations. RESULTS: Significant treatment-induced reductions of DCE-MRI parameters across the cohort were observed for EF (91.2 to 50.8%, P<0.001), KEF (0.095 to 0.045 min-1, P<0.001) and Ktrans (0.109 to 0.078 min-1, P=0.002). For IVIM-DWI, only D (a non-perfusion parameter) increased significantly post treatment (0.83 to 0.97 × 10-3 mm2/s, P<0.001), while perfusion-related parameters showed no change. No strong correlations were found between DCE-MRI and IVIM-DWI parameters. A moderate correlation was found, after treatment, between Ktrans and D* (r=0.60; P=0.002) and fD* (r=0.67; P<0.001). When compared to RECIST v.1.1 evaluations, KEF and D correctly identified most clinical responders, whilst non-responders were incorrectly identified. CONCLUSION: IVIM-DWI perfusion-related parameters showed limited sensitivity to the anti-angiogenic effects of Regorafenib treatment in colorectal liver metastases and showed low correlation with DCE-MRI parameters, despite profound and significant post-treatment reductions in DCE-MRI measurements. TRIAL REGISTRATION: NCT03010722 clinicaltrials.gov; registration date 6th January 2015.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/tratamento farmacológico , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Imageamento por Ressonância Magnética , Estudos Prospectivos
9.
Radiographics ; 41(6): 1717-1732, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34597235

RESUMO

Radiomics refers to the extraction of mineable data from medical imaging and has been applied within oncology to improve diagnosis, prognostication, and clinical decision support, with the goal of delivering precision medicine. The authors provide a practical approach for successfully implementing a radiomic workflow from planning and conceptualization through manuscript writing. Applications in oncology typically are either classification tasks that involve computing the probability of a sample belonging to a category, such as benign versus malignant, or prediction of clinical events with a time-to-event analysis, such as overall survival. The radiomic workflow is multidisciplinary, involving radiologists and data and imaging scientists, and follows a stepwise process involving tumor segmentation, image preprocessing, feature extraction, model development, and validation. Images are curated and processed before segmentation, which can be performed on tumors, tumor subregions, or peritumoral zones. Extracted features typically describe the distribution of signal intensities and spatial relationship of pixels within a region of interest. To improve model performance and reduce overfitting, redundant and nonreproducible features are removed. Validation is essential to estimate model performance in new data and can be performed iteratively on samples of the dataset (cross-validation) or on a separate hold-out dataset by using internal or external data. A variety of noncommercial and commercial radiomic software applications can be used. Guidelines and artificial intelligence checklists are useful when planning and writing up radiomic studies. Although interest in the field continues to grow, radiologists should be familiar with potential pitfalls to ensure that meaningful conclusions can be drawn. Online supplemental material is available for this article. Published under a CC BY 4.0 license.


Assuntos
Inteligência Artificial , Processamento de Imagem Assistida por Computador , Diagnóstico por Imagem , Humanos , Oncologia , Radiografia
10.
Front Oncol ; 10: 704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457842

RESUMO

Purpose: To characterize the voxel-wise uncertainties of Apparent Diffusion Coefficient (ADC) estimation from whole-body diffusion-weighted imaging (WBDWI). This enables the calculation of a new parametric map based on estimates of ADC and ADC uncertainty to improve WBDWI imaging standardization and interpretation: NoIse-Corrected Exponentially-weighted diffusion-weighted MRI (niceDWI). Methods: Three approaches to the joint modeling of voxel-wise ADC and ADC uncertainty (σADC) are evaluated: (i) direct weighted least squares (DWLS), (ii) iterative linear-weighted least-squares (IWLS), and (iii) smoothed IWLS (SIWLS). The statistical properties of these approaches in terms of ADC/σADC accuracy and precision is compared using Monte Carlo simulations. Our proposed post-processing methodology (niceDWI) is evaluated using an ice-water phantom, by comparing the contrast-to-noise ratio (CNR) with conventional exponentially-weighted DWI. We present the clinical feasibility of niceDWI in a pilot cohort of 16 patients with metastatic prostate cancer. Results: The statistical properties of ADC and σADC conformed closely to the theoretical predictions for DWLS, IWLS, and SIWLS fitting routines (a minor bias in parameter estimation is observed with DWLS). Ice-water phantom experiments demonstrated that a range of CNR could be generated using the niceDWI approach, and could improve CNR compared to conventional methods. We successfully implemented the niceDWI technique in our patient cohort, which visually improved the in-plane bias field compared with conventional WBDWI. Conclusions: Measurement of the statistical uncertainty in ADC estimation provides a practical way to standardize WBDWI across different scanners, by providing quantitative image signals that improve its reliability. Our proposed method can overcome inter-scanner and intra-scanner WBDWI signal variations that can confound image interpretation.

11.
Phys Med Biol ; 64(10): 105015, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30965296

RESUMO

Despite the utility of tumour characterisation using quantitative parameter maps from multi-b-value diffusion-weighted MRI (DWI), clinicians often prefer the use of the image with highest diffusion-weighting (b-value), for instance for defining regions of interest (ROIs). However, these images are typically degraded by noise, as they do not utilize the information from the full acquisition. We present a principal component analysis (PCA) approach for model-free denoising of DWI data. PCA-denoising was compared to synthetic MRI, where a diffusion model is fitted for each voxel and a denoised image at a given b-value is generated from the model fit. A quantitative comparison of systematic and random errors was performed on data simulated using several diffusion models (mono-exponential, bi-exponential, stretched-exponential and kurtosis). A qualitative visual comparison was also performed for in vivo images in six healthy volunteers and three pancreatic cancer patients. In simulations, the reduction in random errors from PCA-denoising was substantial (up to 55%) and similar to synthetic MRI (up to 53%). Model-based synthetic MRI denoising resulted in substantial (up to 29% of signal) systematic errors, whereas PCA-denoising was able to denoise without introducing systematic errors (less than 2%). In vivo, the signal-to-noise ratio (SNR) and sharpness of PCA-denoised images were superior to synthetic MRI, resulting in clearer tumour boundaries. In the presence of motion, PCA-denoising did not cause image blurring, unlike image averaging or synthetic MRI. Multi-b-value MRI can be denoised model-free with our PCA-denoising strategy that reduces noise to a level similar to synthetic MRI, but without introducing systematic errors associated with the synthetic MRI method.


Assuntos
Algoritmos , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pancreáticas/patologia , Análise de Componente Principal , Razão Sinal-Ruído , Estudos de Casos e Controles , Voluntários Saudáveis , Humanos , Movimento
12.
J Magn Reson Imaging ; 50(2): 619-627, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30589150

RESUMO

BACKGROUND: Interpretation of diffusion in conjunction with T2 -weighted MRI is essential for assessing prostate cancer; however, the combination of apparent diffusion coefficient (ADC) with quantitative T2 mapping remains unexplored. PURPOSE: To document the T2 components and ADC of untreated and irradiated nonmalignant prostate tissue as a measure of their glandular luminal and cellular compartments and to compare values with those of tumor. STUDY TYPE: Prospective. POPULATION: Twenty-four men with prostate cancer (14 untreated; 10 with biochemical recurrence following radiation therapy). FIELD STRENGTH/SEQUENCES: Endorectal 3 T MRI including a 32-echo gradient echo and spin echo (GRASE) and an 8 b-value diffusion-weighted sequence. ASSESSMENT: Regions of interest were drawn on ADC maps and T2 -weighted images around focal lesions in areas of biopsy-positive prostate cancer and in nonmalignant areas of untreated and irradiated peripheral zone (PZ), and untreated transitional zone (TZ). Multiecho T2 data were fitted with mono-/biexponential decay and nonnegative least squares functions. The luminal water fraction (LWF) was derived. STATISTICAL TESTS: The preference between mono- and biexponential decay was assessed using the Bayesian information criterion. Differences in fitted parameters between tissue types were compared (paired t-test within groups, Kruskal-Wallis and Wilcoxon rank-sum test between groups) and correlations between ADC and T2 components assessed (Spearman rank correlation test). RESULTS: LWF in tumor (0.09) was significantly lower than in PZ or TZ (0.27 and 0.18, P < 0.01, respectively), but tumor values were comparable to nonmalignant irradiated prostate (0.08). The short T2 relaxation rate was lower in tumor than in nonmalignant untreated or irradiated tissue (significant compared with TZ, P = 0.01). There was a strong correlation between LWF and ADC in normal untreated tissue (r = 0.88, P < 0.001). This relationship was absent in nonmalignant irradiated prostrate (r = -0.35, P = 0.42) and in tumor (r = -0.04, P = 0.88). DATA CONCLUSION: T2 components in conjunction with ADC can be used to characterize untreated and irradiated nonmalignant prostate and tumor. LWF is most useful at discriminating tumor in the untreated prostate. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:619-627.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Teorema de Bayes , Biópsia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Análise dos Mínimos Quadrados , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Estudos Prospectivos , Resultado do Tratamento , Água
13.
Front Oncol ; 8: 26, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29503808

RESUMO

PURPOSE: To examine the usefulness of rich diffusion protocols with high b-values and varying diffusion time for probing microstructure in bone metastases. Analysis techniques including biophysical and mathematical models were compared with the clinical apparent diffusion coefficient (ADC). METHODS: Four patients were scanned using 13 b-values up to 3,000 s/mm2 and diffusion times ranging 18-52 ms. Data were fitted to mono-exponential ADC, intravoxel incoherent motion (IVIM), Kurtosis and Vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT) models. Parameters from the models were compared using correlation plots. RESULTS: ADC and IVIM did not fit the data well, failing to capture the signal at high b-values. The Kurtosis model best explained the data in many voxels, but in voxels exhibiting a more time-dependent signal, the VERDICT model explained the data best. The ADC correlated significantly (p < 0.004) with the intracellular diffusion coefficient (r = 0.48), intracellular volume fraction (r = -0.21), and perfusion fraction (r = 0.46) parameters from VERDICT, suggesting that these factors all contribute to ADC contrast. The mean kurtosis correlated with the intracellular volume fraction parameter (r = 0.26) from VERDICT, consistent with the hypothesis that kurtosis relates to cellularity, but also correlated weakly with the intracellular diffusion coefficient (r = 0.18) and cell radius (r = 0.16) parameters, suggesting that it may be difficult to attribute physical meaning to kurtosis. CONCLUSION: Both Kurtosis and VERDICT explained the diffusion signal better than ADC and IVIM, primarily due to poor fitting at high b-values in the latter two models. The Kurtosis and VERDICT models captured information at high b using parameters (Kurtosis or intracellular volume fraction and radius) that do not have a simple relationship with ADC and that may provide additional microstructural information in bone metastases.

14.
Eur Radiol ; 28(4): 1642-1653, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29038934

RESUMO

OBJECTIVES: To determine the ability of multi-parametric, endogenous contrast MRI to detect and quantify fibrosis in a chemically-induced rat model of mammary carcinoma. METHODS: Female Sprague-Dawley rats (n=18) were administered with N-methyl-N-nitrosourea; resulting mammary carcinomas underwent nine-b-value diffusion-weighted (DWI), ultrashort-echo (UTE) and magnetisation transfer (MT) magnetic resonance imaging (MRI) on a clinical 1.5T platform, and associated quantitative MR parameters were calculated. Excised tumours were histologically assessed for degree of necrosis, collagen, hypoxia and microvessel density. Significance level adjusted for multiple comparisons was p=0.0125. RESULTS: Significant correlations were found between MT parameters and degree of picrosirius red staining (r > 0.85, p < 0.0002 for ka and δ, r < -0.75, p < 0.001 for T1 and T1s, Pearson), indicating that MT is sensitive to collagen content in mammary carcinoma. Picrosirius red also correlated with the DWI parameter fD* (r=0.801, p=0.0004) and conventional gradient-echo T2* (r=-0.660, p=0.0055). Percentage necrosis correlated moderately with ultrashort/conventional-echo signal ratio (r=0.620, p=0.0105). Pimonidazole adduct (hypoxia) and CD31 (microvessel density) staining did not correlate with any MR parameter assessed. CONCLUSIONS: Magnetisation transfer MRI successfully detects collagen content in mammary carcinoma, supporting inclusion of MT imaging to identify fibrosis, a prognostic marker, in clinical breast MRI examinations. KEY POINTS: • Magnetisation transfer imaging is sensitive to collagen content in mammary carcinoma. • Magnetisation transfer imaging to detect fibrosis in mammary carcinoma fibrosis is feasible. • IVIM diffusion does not correlate with microvessel density in preclinical mammary carcinoma.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/patologia , Animais , Meios de Contraste , Feminino , Fibrose/diagnóstico por imagem , Humanos , Necrose/diagnóstico por imagem , Nitroimidazóis , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Ratos Sprague-Dawley
15.
Radiology ; 284(1): 88-99, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28301311

RESUMO

Purpose To assess the repeatability of apparent diffusion coefficient (ADC) estimates in extracranial soft-tissue diffusion-weighted magnetic resonance imaging across a wide range of imaging protocols and patient populations. Materials and Methods Nine prospective patient studies and one prospective volunteer study, performed between 2006 and 2016 with research ethics committee approval and written informed consent from each subject, were included in this single-institution study. A total of 141 tumors and healthy organs were imaged twice (interval between repeated examinations, 45 minutes to 10 days, depending the on study) to assess the repeatability of median and mean ADC estimates. The Levene test was used to determine whether ADC repeatability differed between studies. The Pearson linear correlation coefficient was used to assess correlation between coefficient of variation (CoV) and the year the study started, study size, and volumes of tumors and healthy organs. The repeatability of ADC estimates from small, medium, and large tumors and healthy organs was assessed irrespective of study, and the Levene test was used to determine whether ADC repeatability differed between these groups. Results CoV aggregated across all studies was 4.1% (range for each study, 1.7%-6.5%). No correlation was observed between CoV and the year the study started or study size. CoV was weakly correlated with volume (r = -0.5, P = .1). Repeatability was significantly different between small, medium, and large tumors (P < .05), with the lowest CoV (2.6%) for large tumors. There was a significant difference in repeatability between studies-a difference that did not persist after the study with the largest tumors was excluded. Conclusion ADC is a robust imaging metric with excellent repeatability in extracranial soft tissues across a wide range of tumor sites, sizes, patient populations, and imaging protocol variations. Online supplemental material is available for this article.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias de Tecidos Moles/diagnóstico por imagem , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Estudos Prospectivos , Reprodutibilidade dos Testes
16.
Br J Radiol ; 90(1071): 20160416, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28055249

RESUMO

OBJECTIVE: To establish the interobserver reproducibility of tumour volumetry on individual multiparametric (mp) prostate MRI sequences, validate measurements with histology and determine whether functional to morphological volume ratios reflect Gleason score. METHODS: 41 males with prostate cancer treated with prostatectomy (Cohort 1) or radical radiotherapy (Cohort 2), who had pre-treatment mpMRI [T2 weighted (T2W) MRI, diffusion-weighted (DW)-MRI and dynamic contrast-enhanced (DCE)-MRI], were studied retrospectively. Dominant intraprostatic lesions (DIPLs) were manually delineated on each sequence and volumes were compared between observers (n = 40 analyzable) and with radical prostatectomy (n = 20). Volume ratios of DW-MRI and DCE-MRI to T2W MRI were documented and compared between Gleason grade 3 + 3, 3 + 4 and 4 + 3 or greater categories. RESULTS: Limits of agreement of DIPL volumes between observers were: T2W MRI 0.9, -1.1 cm3, DW-MRI 1.3, -1.7 cm3 and DCE-MRI 0.74, -0.89 cm3. In Cohort 1, T2W volumes overestimated fixed specimen histological volumes (+33% Observer 1, +16% Observer 2); DW- and DCE-MRI underestimated histological volume, the latter markedly so (-32% Observer 1, -79% Observer 2). Differences between T2W, DW- and DCE-MRI volumes were significant (p < 10-8). The ratio of DW-MRI volume (73.9 ± 18.1% Observer 1, 72.5 ± 21.9% Observer 2) and DCE-MRI volume (42.6 ± 24.6% Observer 1, 34.3 ± 24.9% Observer 2) to T2W volume was significantly different (p < 10-8), but these volume ratios did not differ between the Gleason grades. CONCLUSION: The low variability of the DIPL volume on T2W MRI between Observers and agreement with histology indicates its suitability for delineation of gross tumour volume for radiotherapy planning. The volume of cellular tumour represented by DW-MRI is greater than the vascular (DCE) abnormality; ratios of both to T2W volume are independent of Gleason score. Advances in knowledge: (1) Manual volume measurement of tumour is reproducible within 1 cm3 between observers on all sequences, confirming suitability across observers for radiotherapy planning. (2) Volumes derived on T2W MRI most accurately represent in vivo lesion volumes. (3) The proportion of cellular (DW-MRI) or vascular (DCE-MRI) volume to morphological (T2W MRI) volume is not affected by Gleason score.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Idoso , Meios de Contraste , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Gradação de Tumores , Variações Dependentes do Observador , Próstata/diagnóstico por imagem , Próstata/patologia , Reprodutibilidade dos Testes , Estudos Retrospectivos , Carga Tumoral
17.
Eur Radiol ; 27(1): 345-353, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27003140

RESUMO

OBJECTIVES: To examine repeatability of parameters derived from non-Gaussian diffusion models in data acquired in children with solid tumours. METHODS: Paediatric patients (<16 years, n = 17) were scanned twice, 24 h apart, using DWI (6 b-values, 0-1000 mm-2 s) at 1.5 T in a prospective study. Tumour ROIs were drawn (3 slices) and all data fitted using IVIM, stretched exponential, and kurtosis models; percentage coefficients of variation (CV) calculated for each parameter at all ROI histogram centiles, including the medians. RESULTS: The values for ADC, D, DDCα, α, and DDCK gave CV < 10 % down to the 5th centile, with sharp CV increases below 5th and above 95th centile. K, f, and D* showed increased CV (>30 %) over the histogram. ADC, D, DDCα, and DDCK were strongly correlated (ρ > 0.9), DDCα and α were not correlated (ρ = 0.083). CONCLUSION: Perfusion- and kurtosis-related parameters displayed larger, more variable CV across the histogram, indicating observed clinical changes outside of D/DDC in these models should be interpreted with caution. Centiles below 5th for all parameters show high CV and are unreliable as diffusion metrics. The stretched exponential model behaved well for both DDCα and α, making it a strong candidate for modelling multiple-b-value diffusion imaging data. KEY POINTS: • ADC has good repeatability as low 5th centile of the histogram distribution. • High CV was observed for all parameters at extremes of histogram. • Parameters from the stretched exponential model showed low coefficients of variation. • The median ADC, D, DDC α , and DDC K are highly correlated and repeatable. • Perfusion/kurtosis parameters showed high CV variations across their histogram distributions.


Assuntos
Imagem de Difusão por Ressonância Magnética/estatística & dados numéricos , Modelos Teóricos , Neoplasias/diagnóstico por imagem , Adolescente , Criança , Estudos de Coortes , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Masculino , Estudos Prospectivos , Reprodutibilidade dos Testes
18.
Pediatr Blood Cancer ; 64(2): 279-283, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27615273

RESUMO

Diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) have been used as imaging biomarkers in adults with high-grade gliomas (HGGs). We incorporated free-breathing DW-MRI and DCE-MRI, at a single time point, in the routine follow-up of five children (median age 9 years, range 8-15) with histologically confirmed HGG within a prospective imaging study. It was feasible to incorporate DW-MRI and DCE-MRI in routine assessments of children with HGG. DW and DCE parameters were repeatable in paediatric HGG. Higher median ADC100-1000 significantly correlated with longer survival in our sample.


Assuntos
Neoplasias Encefálicas/diagnóstico , Meios de Contraste , Imagem de Difusão por Ressonância Magnética/métodos , Glioma/diagnóstico , Processamento de Imagem Assistida por Computador/métodos , Adolescente , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Criança , Estudos de Viabilidade , Feminino , Seguimentos , Glioma/diagnóstico por imagem , Humanos , Masculino , Gradação de Tumores , Prognóstico , Adulto Jovem
19.
Eur Radiol ; 27(2): 627-636, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27221560

RESUMO

OBJECTIVES: Assessment of empirical diffusion-weighted MRI (DW-MRI) models in cervical tumours to investigate whether fitted parameters distinguish between types and grades of tumours. METHODS: Forty-two patients (24 squamous cell carcinomas, 14 well/moderately differentiated, 10 poorly differentiated; 15 adenocarcinomas, 13 well/moderately differentiated, two poorly differentiated; three rare types) were imaged at 3 T using nine b-values (0 to 800 s mm-2). Mono-exponential, stretched exponential, kurtosis, statistical, and bi-exponential models were fitted. Model preference was assessed using Bayesian Information Criterion analysis. Differences in fitted parameters between tumour types/grades and correlation between fitted parameters were assessed using two-way analysis of variance and Pearson's linear correlation coefficient, respectively. RESULTS: Non-mono-exponential models were preferred by 83 % of tumours with bi-exponential and stretched exponential models preferred by the largest numbers of tumours. Apparent diffusion coefficient (ADC) and diffusion coefficients from non-mono-exponential models were significantly lower in poorly differentiated tumours than well/moderately differentiated tumours. α (stretched exponential), K (kurtosis), f and D* (bi-exponential) were significantly different between tumour types. Strong correlation was observed between ADC and diffusion coefficients from other models. CONCLUSIONS: Non-mono-exponential models were preferred to the mono-exponential model in DW-MRI data from cervical tumours. Parameters of non-mono-exponential models showed significant differences between types and grades of tumours. KEY POINTS: • Non-mono-exponential DW-MRI models are preferred in the majority of cervical tumours. • Poorly differentiated cervical tumours exhibit lower diffusion coefficients than well/moderately differentiated tumours. • Non-mono-exponential model parameters α, K, f, and D* differ between tumour types. • Micro-structural features are likely to affect parameters in non-mono-exponential models differently.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Carcinoma de Células Escamosas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/patologia , Teorema de Bayes , Carcinoma de Células Escamosas/patologia , Colo do Útero/diagnóstico por imagem , Colo do Útero/patologia , Feminino , Humanos , Masculino , Modelos Teóricos , Gradação de Tumores , Estudos Prospectivos
20.
Comput Biol Med ; 79: 92-98, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27770679

RESUMO

PURPOSE: To introduce T2-adjusted computed DWI (T2-cDWI), a method that provides synthetic images at arbitrary b-values and echo times (TEs) that improve tissue contrast by removing or increasing T2 contrast in diffusion-weighted images. MATERIALS AND METHODS: In addition to the standard DWI acquisition protocol T2-weighted echo-planar images at multiple (≥2) echo times were acquired. This allows voxelwise estimation of apparent diffusion coefficient (ADC) and T2 values, permitting synthetic images to be generated at any chosen b-value and echo time. An analytical model is derived for the noise properties in T2-cDWI, and validated using a diffusion test-object. Furthermore, we present T2-cDWI in two example clinical case studies: (i) a patient with mesothelioma demonstrating multiple disease tissue compartments and (ii) a patient with primary ovarian cancer demonstrating solid and cystic disease compartments. RESULTS: Measured image noise in T2-cDWI from phantom experiments conformed to the analytical model and demonstrated that T2-cDWI at high computed b-value/TE combinations achieves lower noise compared with conventional DWI. In patients, T2-cDWI with low b-value and long TE enhanced fluid signal while suppressing solid tumour components. Conversely, large b-values and short TEs overcome T2 shine-through effects and increase the contrast between tumour and fluid compared with conventional high-b-value DW images. CONCLUSION: T2-cDWI is a promising clinical tool for improving image signal-to-noise, image contrast, and tumour detection through suppression of T2 shine-through effects.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA