Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Hum Reprod Open ; 2024(2): hoae010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449521

RESUMO

STUDY QUESTION: Twenty years after the inception of the first fertility preservation programme for pre-pubertal boys, what are the current international practices with regard to cryopreservation of immature testicular tissue? SUMMARY ANSWER: Worldwide, testicular tissue has been cryopreserved from over 3000 boys under the age of 18 years for a variety of malignant and non-malignant indications; there is variability in practices related to eligibility, clinical assessment, storage, and funding. WHAT IS KNOWN ALREADY: For male patients receiving gonadotoxic treatment prior to puberty, testicular tissue cryopreservation may provide a method of fertility preservation. While this technique remains experimental, an increasing number of centres worldwide are cryopreserving immature testicular tissue and are approaching clinical application of methods to use this stored tissue to restore fertility. As such, standards for quality assurance and clinical care in preserving immature testicular tissue should be established. STUDY DESIGN SIZE DURATION: A detailed survey was sent to 17 centres within the recently established ORCHID-NET consortium, which offer testicular tissue cryopreservation to patients under the age of 18 years. The study encompassed 60 questions and remained open from 1 July to 1 November 2022. PARTICIPANTS/MATERIALS SETTING METHODS: Of the 17 invited centres, 16 completed the survey, with representation from Europe, Australia, and the USA. Collectively, these centres have cryopreserved testicular tissue from patients under the age of 18 years. Data are presented using descriptive analysis. MAIN RESULTS AND THE ROLE OF CHANCE: Since the establishment of the first formal fertility preservation programme for pre-pubertal males in 2002, these 16 centres have cryopreserved tissue from 3118 patients under the age of 18 years, with both malignant (60.4%) and non-malignant (39.6%) diagnoses. All centres perform unilateral biopsies, while 6/16 sometimes perform bilateral biopsies. When cryopreserving tissue, 9/16 centres preserve fragments sized ≤5 mm3 with the remainder preserving fragments sized 6-20 mm3. Dimethylsulphoxide is commonly used as a cryoprotectant, with medium supplements varying across centres. There are variations in funding source, storage duration, and follow-up practice. Research, with consent, is conducted on stored tissue in 13/16 centres. LIMITATIONS REASONS FOR CAUTION: While this is a multi-national study, it will not encompass every centre worldwide that is cryopreserving testicular tissue from males under 18 years of age. As such, it is likely that the actual number of patients is even higher than we report. Whilst the study is likely to reflect global practice overall, it will not provide a complete picture of practices in every centre. WIDER IMPLICATIONS OF THE FINDINGS: Given the research advances, it is reasonable to suggest that cryopreserved immature testicular tissue will in the future be used clinically to restore fertility. The growing number of patients undergoing this procedure necessitates collaboration between centres to better harmonize clinical and research protocols evaluating tissue function and clinical outcomes in these patients. STUDY FUNDING/COMPETING INTERESTS: K.D. is supported by a CRUK grant (C157/A25193). R.T.M. is supported by an UK Research and Innovation (UKRI) Future Leaders Fellowship (MR/S017151/1). The MRC Centre for Reproductive Health at the University of Edinburgh is supported by MRC (MR/N022556/1). C.L.M. is funded by Kika86 and ZonMW TAS 116003002. A.M.M.v.P. is supported by ZonMW TAS 116003002. E.G. was supported by the Research Program of the Research Foundation-Flanders (G.0109.18N), Kom op tegen Kanker, the Strategic Research Program (VUB_SRP89), and the Scientific Fund Willy Gepts. J.-B.S. is supported by the Swedish Childhood Cancer Foundation (TJ2020-0026). The work of NORDFERTIL is supported by the Swedish Childhood Cancer Foundation (PR2019-0123; PR2022-0115), the Swedish Research Council (2018-03094; 2021-02107), and the Birgitta and Carl-Axel Rydbeck's Research Grant for Paediatric Research (2020-00348; 2021-00073; 2022-00317; 2023-00353). C.E is supported by the Health Department of the Basque Government (Grants 2019111068 and 2022111067) and Inocente Inocente Foundation (FII22/001). M.P.R. is funded by a Medical Research Council Centre for Reproductive Health Grant No: MR/N022556/1. A.F. and N.R. received support from a French national research grant PHRC No. 2008/071/HP obtained by the French Institute of Cancer and the French Healthcare Organization. K.E.O. is funded by the University of Pittsburgh Medical Center and the US National Institutes of Health HD100197. V.B-L is supported by the French National Institute of Cancer (Grant Seq21-026). Y.J. is supported by the Royal Children's Hospital Foundation and a Medical Research Future Fund MRFAR000308. E.G., N.N., S.S., C.L.M., A.M.M.v.P., C.E., R.T.M., K.D., M.P.R. are members of COST Action CA20119 (ANDRONET) supported by COST (European Cooperation in Science and Technology). The Danish Child Cancer Foundation is also thanked for financial support (C.Y.A.). The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.

2.
Stem Cell Res ; 73: 103257, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38000347

RESUMO

Curative bone marrow transplantation (BMT) therapies for sickle cell disease (SCD) can cause infertility. The Fertility Preservation Program (FPP) in Pittsburgh cryopreserves testicular tissues for SCD patients prior to BMT in anticipation that those tissues can be thawed in the future and matured to produce sperm. Here, we generated and validated two isogenic patient-derived induced pluripotent stem cell (iPSC) lines from testicular biopsy fibroblasts of a 12-year-old SCD patient.


Assuntos
Anemia Falciforme , Células-Tronco Pluripotentes Induzidas , Humanos , Masculino , Criança , Células-Tronco Pluripotentes Induzidas/patologia , Sêmen , Transplante de Medula Óssea , Anemia Falciforme/patologia , Fibroblastos/patologia
3.
J Tissue Eng ; 14: 20417314231197282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029018

RESUMO

Female cancer patients who have undergone chemotherapy have an elevated risk of developing ovarian dysfunction and failure. Experimental approaches to treat iatrogenic infertility are evolving rapidly; however, challenges and risks remain that hinder clinical translation. Biomaterials have improved in vitro follicle maturation and in vivo transplantation in mice, but there has only been marginal success for early-stage human follicles. Here, we developed methods to obtain an ovarian-specific extracellular matrix hydrogel to facilitate follicle delivery and establish an in situ ovary (ISO), which offers a permissive environment to enhance follicle survival. We demonstrate sustainable follicle engraftment, natural pregnancy, and the birth of healthy pups after intraovarian microinjection of isolated exogenous follicles into chemotherapy-treated (CTx) mice. Our results confirm that hydrogel-based follicle microinjection could offer a minimally invasive delivery platform to enhance follicle integration for patients post-chemotherapy.

4.
Front Endocrinol (Lausanne) ; 14: 1242263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701899

RESUMO

Background: Cryopreservation of immature testicular tissue (ITT) is currently the only option to preserve fertility of prepubertal patients. Autologous transplantation of ITT may not be safe or appropriate for all patients. Therefore, methods to mature ITT ex vivo are needed. Objectives: Aim to investigate the feasibility of inducing in vitro spermatogenesis from ITT cryopreserved for pediatric patients prior to initiation of gonadotoxic therapy. Materials and methods: Cryopreserved-thawed ITT from prepubertal and peripubertal patients were cultured for 7, 16, and 32 days in medium with no hormones or supplemented with 5 IU/L FSH, 1 IU/L hCG, or 5IU/L FSH+1 IU/L hCG. Samples were evaluated histologically to assess tissue integrity, and immunofluorescence staining was performed to identify VASA (DDX4)+ germ cells, UCHL1+ spermatogonia, SYCP3+ spermatocytes, CREM+ spermatids, SOX9+ Sertoli cells. Proliferation (KI67) and apoptosis (CASPASE3) of germ cells and Sertoli cells were also analyzed. Sertoli and Leydig cell maturation was evaluated by AR and INSL3 expression as well as expression of the blood testis barrier protein, CLAUDIN11, and testosterone secretion in the culture medium. Results: Integrity of seminiferous tubules, VASA+ germ cells and SOX9+ Sertoli cells were maintained up to 32 days. The number of VASA+ germ cells was consistently higher in the peripubertal groups. UCHL1+ undifferentiated spermatogonia and SOX9+ Sertoli cell proliferation was confirmed in most samples. SYCP3+ primary spermatocytes began to appear by day 16 in both age groups. Sertoli cell maturation was demonstrated by AR expression but the expression of CLAUDIN11 was disorganized. Presence of mature and functional Leydig cells was verified by INSL3 expression and secretion of testosterone. Gonadotropin treatments did not consistently impact the number or proliferation of germ cells or somatic cells, but FSH was necessary to increase testosterone secretion over time in prepubertal samples. Conclusion: ITT were maintained in organotypic culture for up to 32 days and spermatogonia differentiated to produce primary spermatocytes in both pre- and peripubertal age groups. However, complete spermatogenesis was not observed in either group.


Assuntos
Preservação da Fertilidade , Masculino , Humanos , Criança , Técnicas de Cultura de Órgãos , Criopreservação , Testosterona , Hormônio Foliculoestimulante
5.
Methods Mol Biol ; 2656: 341-364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37249880

RESUMO

Mammalian spermatogenesis is a complex, highly productive process generating millions of sperm per day. Spermatogonial stem cells (SSCs) are at the foundation of spermatogenesis and can either self-renew, producing more SSCs, or differentiate to initiate spermatogenesis and produce sperm. The biological potential of SSCs to produce and maintain spermatogenesis makes them a promising tool for the treatment of male infertility. However, translating knowledge from rodents to higher primates (monkeys and humans) is challenged by different vocabularies that are used to describe stem cells and spermatogenic lineage development in those species. Furthermore, while rodent SSCs are defined by their biological potential to produce and maintain spermatogenesis in a transplant assay, there is no equivalent routine and accessible bioassay to test monkey and human SSCs or replicate their functions in vitro. This chapter describes progress characterizing, isolating, culturing, and transplanting SSCs in higher primates.


Assuntos
Sêmen , Espermatogônias , Animais , Masculino , Humanos , Primatas , Espermatogênese , Células-Tronco , Haplorrinos , Roedores
6.
Biol Reprod ; 107(2): 382-405, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35403667

RESUMO

Medical treatments for cancers or other conditions can lead to permanent infertility. Infertility is an insidious disease that impacts not only the ability to have a biological child but also the emotional well-being of the infertile individuals, relationships, finances, and overall health. Therefore, all patients should be educated about the effects of their medical treatments on future fertility and about fertility preservation options. The standard fertility preservation option for adolescent and adult men is sperm cryopreservation. Sperms can be frozen and stored for a long period, thawed at a later date, and used to achieve pregnancy with existing assisted reproductive technologies. However, sperm cryopreservation is not applicable for prepubertal patients who do not yet produce sperm. The only fertility preservation option available to prepubertal boys is testicular tissue cryopreservation. Next-generation technologies are being developed to mature those testicular cells or tissues to produce fertilization-competent sperms. When sperm and testicular tissues are not available for fertility preservation, inducing pluripotent stem cells derived from somatic cells, such as blood or skin, may provide an alternative path to produce sperms through a process call in vitro gametogenesis. This review describes standard and experimental options to preserve male fertility as well as the experimental options to produce functional spermatids or sperms from immature cryopreserved testicular tissues or somatic cells.


Assuntos
Preservação da Fertilidade , Infertilidade , Neoplasias , Adolescente , Adulto , Criança , Criopreservação , Humanos , Masculino , Neoplasias/complicações , Neoplasias/terapia , Sêmen , Testículo
7.
Front Endocrinol (Lausanne) ; 13: 990359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733807

RESUMO

Objective: Some individuals with differences of sex development (DSD) conditions undergo medically indicated prophylactic gonadectomy. Gonads of individuals with DSD can contain germ cells and precursors and patients interested in future fertility preservation and hormonal restoration can participate in DSD-specific research protocols to cryopreserve this tissue. However, it is unclear how many providers or institutions offer gonadal tissue cryopreservation (GTC) and how widespread GTC for DSD is across the United States (US). The Pediatric Initiative Network (PIN) and Non-Oncologic Conditions committees of the Oncofertility Consortium sought to assess the current state of GTC for patients with DSD. Methods: An electronic survey was sent to providers caring for patients with DSD via special interest groups of professional societies and research networks. Results: The survey was administered between November 15, 2021 and March 14, 2022. A total of 155 providers responded to the survey, of which 132 respondents care for patients with DSD, and 78 work at facilities that offer medically indicated gonadectomy to patients with DSD diagnoses. They represented 55 US institutions including 47 pediatric hospitals, and 5 international sites (Canada, Denmark, Germany, Qatar). Of individual providers, 41% offer cryopreservation after prophylactic gonadectomy for patients with DSD (32/78). At an institutional level, GTC after medically indicated gonadectomy is available at 54.4% (24/46) of institutions. GTC is offered for a variety of DSD diagnoses, most commonly 45,X/46,XY DSD (i.e., Turner Syndrome with Y-chromosome material and mixed gonadal dysgenesis), ovotesticular DSD, complete androgen insensitivity syndrome (CAIS), and complete gonadal dysgenesis. Responses demonstrate regional trends in GTC practices with 83.3% of institutions in the Midwest, 66.7% in the Northeast, 54.6% in the West, and 35.3% in the South providing GTC. All represented institutions (100%) send gonadal tissue for pathological evaluation, and 22.7% preserve tissue for research purposes. Conclusions: GTC after gonadectomy is offered at half of the US institutions represented in our survey, though a minority are currently preserving tissue for research purposes. GTC is offered for several DSD conditions. Future research will focus on examining presence and quality of germ cells to support clinical decision making related to fertility preservation for patients with DSD.


Assuntos
Síndrome de Resistência a Andrógenos , Preservação da Fertilidade , Síndrome de Turner , Masculino , Humanos , Criança , Gônadas/patologia , Criopreservação , Síndrome de Resistência a Andrógenos/patologia , Síndrome de Turner/patologia , Desenvolvimento Sexual
8.
Nat Commun ; 12(1): 3876, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162856

RESUMO

Testicular development and function rely on interactions between somatic cells and the germline, but similar to other organs, regenerative capacity declines in aging and disease. Whether the adult testis maintains a reserve progenitor population remains uncertain. Here, we characterize a recently identified mouse testis interstitial population expressing the transcription factor Tcf21. We found that TCF21lin cells are bipotential somatic progenitors present in fetal testis and ovary, maintain adult testis homeostasis during aging, and act as potential reserve somatic progenitors following injury. In vitro, TCF21lin cells are multipotent mesenchymal progenitors which form multiple somatic lineages including Leydig and myoid cells. Additionally, TCF21+ cells resemble resident fibroblast populations reported in other organs having roles in tissue homeostasis, fibrosis, and regeneration. Our findings reveal that the testis, like other organs, maintains multipotent mesenchymal progenitors that can be potentially leveraged in development of future therapies for hypoandrogenism and/or infertility.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Homeostase/genética , Células-Tronco Mesenquimais/metabolismo , Regeneração/genética , Testículo/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem da Célula/genética , Células Cultivadas , Feminino , Perfilação da Expressão Gênica/métodos , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Célula Única/métodos , Testículo/citologia
9.
Andrology ; 9(5): 1603-1616, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33960147

RESUMO

BACKGROUND: Cancer treatment of prepubertal patients impacts future fertility due to the abolition of spermatogonial stem cells (SSCs). In macaques, spermatogenesis could be regenerated by intratesticular transplantation of SSCs, but no studies have involved cytotoxic treatment before puberty and transplantation after puberty, which would be the most likely clinical scenario. OBJECTIVES: To evaluate donor-derived functional sperm production after SSC transplantation to adult monkeys that had received testicular irradiation during the prepubertal period. MATERIALS AND METHODS: We obtained prepubertal testis tissue by unilaterally castrating six prepubertal monkeys and 2 weeks later irradiated the remaining testes with 6.9 Gy. However, because spermatogenic recovery was observed, we irradiated them again 14 months later with 7 Gy. Three of the monkeys were treated with GnRH-antagonist (GnRH-ant) for 8 weeks. The cryopreserved testis cells from the castrated testes were then allogeneically transplanted into the intact testes of all monkeys. Tissues were harvested 10 months later for analyses. RESULTS: In three of the six monkeys, 61%, 38%, and 11% of the epididymal sperm DNA were of the donor genotype. The ability to recover donor-derived sperm production was not enhanced by the GnRH-ant pretreatment. However, the extent of filling seminiferous tubules during the transplantation procedure was correlated with the eventual production of donor spermatozoa. The donor epididymal spermatozoa from the recipient with 61% donor contribution were capable of fertilizing rhesus eggs and forming embryos. Although the transplantation was done into the rete testis, two GnRH-ant-treated monkeys, which did not produce donor-derived epididymal spermatozoa, displayed irregular tubular cords in the interstitium containing testicular spermatozoa derived from the transplanted donor cells. DISCUSSION AND CONCLUSION: The results further support that sperm production can be restored in non-human primates from tissues cryopreserved prior to prepubertal and post-pubertal gonadotoxic treatment by transplantation of these testicular cells after puberty into seminiferous tubules.


Assuntos
Células-Tronco Germinativas Adultas/transplante , Puberdade/efeitos da radiação , Lesões Experimentais por Radiação/terapia , Espermatogênese/efeitos da radiação , Transplante de Células-Tronco , Animais , Criopreservação , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Antagonistas de Hormônios/administração & dosagem , Macaca mulatta , Masculino , Lesões Experimentais por Radiação/fisiopatologia , Túbulos Seminíferos , Espermatozoides/efeitos da radiação , Testículo/fisiopatologia , Testículo/efeitos da radiação
10.
FASEB J ; 35(5): e21513, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33811704

RESUMO

Human male reproductive development has a prolonged prepubertal period characterized by juvenile quiescence of germ cells with immature spermatogonial stem cell (SSC) precursors (gonocytes) present in the testis for an extended period of time. The metabolism of gonocytes is not defined. We demonstrate with mitochondrial ultrastructure studies via TEM and IHC and metabolic flux studies with UHPLC-MS that a distinct metabolic transition occurs during the maturation to SSCs. The mitochondrial ultrastructure of prepubertal human spermatogonia is shared with prepubertal pig spermatogonia. The metabolism of early prepubertal porcine spermatogonia (gonocytes) is characterized by the reliance on OXPHOS fuelled by oxidative decarboxylation of pyruvate. Interestingly, at the same time, a high amount of the consumed pyruvate is also reduced and excreted as lactate. With maturation, prepubertal spermatogonia show a metabolic shift with decreased OXHPOS and upregulation of the anaerobic metabolism-associated uncoupling protein 2 (UCP2). This shift is accompanied with stem cell specific promyelocytic leukemia zinc finger protein (PLZF) protein expression and glial cell-derived neurotropic factor (GDNF) pathway activation. Our results demonstrate that gonocytes differently from mature spermatogonia exhibit unique metabolic demands that must be attained to enable their maintenance and growth in vitro.


Assuntos
Regulação da Expressão Gênica , Células Germinativas/metabolismo , Estresse Oxidativo , Células-Tronco/metabolismo , Testículo/metabolismo , Animais , Células Germinativas/citologia , Glicólise , Humanos , Masculino , Potencial da Membrana Mitocondrial , Fenótipo , Células-Tronco/citologia , Suínos , Testículo/citologia
11.
Biopreserv Biobank ; 19(2): 130-135, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33847512

RESUMO

Intensive treatments necessary to treat some childhood malignancies and other conditions, as well as certain anatomic variations, may lead to infertility in adulthood. Until recently, no fertility preservation options for prepubertal females were available. However, ovarian tissue cryopreservation has emerged as a safe and effective option for these children. In the next several years, it is likely that more pediatric patients, their families, and medical teams will pursue an ovarian cryopreservation protocol at their institutions. Patient selection, consenting, and laparoscopic oophorectomy can be done at many centers. Then, the ovarian tissue is initially processed and transported to a specialized center for processing for cryopreservation. The cryopreservation techniques are best performed at appropriately certified centers processing high volumes of reproductive cells/tissues with expert personnel and specialized equipment. This article aims to provide an overview for pediatric biobank professionals who may be called to participate in this or similar protocols.


Assuntos
Preservação da Fertilidade , Neoplasias , Criança , Criopreservação , Feminino , Humanos , Ovário , Projetos de Pesquisa
12.
Stem Cell Reports ; 16(3): 597-609, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33636117

RESUMO

One cause of human male infertility is a scarcity of spermatogonial stem cells (SSCs) in testes with Sertoli cells that neither produce adequate amounts of GDNF nor form the Sertoli-Sertoli junctions that form the blood-testis barrier (BTB). These patients raise the issue of whether a pool of SSCs, depleted due to inadequate GDNF stimulation, will expand if normal signaling is restored. Here, we reduce adult mouse SSC numbers by 90% using a chemical-genetic approach that reversibly inhibits GDNF signaling. Signal resumption causes all remaining SSCs to replicate immediately, but they primarily form differentiating progenitor spermatogonia. Subsequently, self-renewing replication restores SSC numbers. Testicular GDNF levels are not increased during restoration. However, SSC replication decreases as numbers of SSCs and progenitors increase, suggesting important regulatory interactions among these cells. Finally, sequential loss of SSCs and then pachytene spermatocytes causes dissolution of the BTB, thereby recapitulating another important characteristic of some infertile men.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , Autorrenovação Celular , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Infertilidade Masculina/metabolismo , Células de Sertoli/metabolismo , Transdução de Sinais , Células-Tronco Germinativas Adultas/transplante , Animais , Contagem de Células , Diferenciação Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Células-Tronco
13.
J Assist Reprod Genet ; 37(11): 2825-2838, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32840762

RESUMO

PURPOSE: To keep and increase spermatogonial stem cell number (SSC) is the only available option for pediatric cancer survivors to maintain fertility. Leptin is secreted by the epididymal white adipose tissue and has receptors on stem/progenitor spermatogonia. The purpose of this study is to demonstrate dose- and time-dependent proliferative effect of leptin on stem/progenitor spermatogonia cultures from prepubertal mice testes. METHODS: CD90.2 (+) stem/progenitor spermatogonia were isolated from the C57BL/6 mouse testis on postnatal day 6 and placed in culture. The proliferative effect of leptin supplementation was assessed by colony formation (diameter and number), WST proliferation assays, and xCELLigence real-time cell analysis (RTCA) on days 3, 5, and 7 of culture. Expressions of p-ERK1/2, p-STAT3, total STAT3, and p-SHP2 levels were determined by western blot analysis. RESULTS: Leptin supplementation of 100 ng/ml increased the diameter (p = 0.001) and number (p = 0.01) of colonies in stem/progenitor spermatogonial cultures and caused higher proliferation by WST-1 (p = 0.009) compared with the control on day 7. The EC50 was calculated as 114 ng/ml for leptin by RTCA. Proliferative dose of leptin induced increased expression of p-ERK1/2 (p = 0.009) and p-STAT3 (p = 0.023) on stem/progenitor spermatogonia when compared with the untreated group. CONCLUSION: The results indicated that leptin supplementation exhibited a dose- and time-dependent proliferative effect on stem/progenitor spermatogonia that was associated with increased expression of ERK1/2 and STAT3 pathways while maintaining their undifferentiated state. This output presents a new agent that may help to expand the stem/progenitor spermatogonia pool from the neonatal testis in order to autotransplant after cancer treatment.


Assuntos
Células-Tronco Germinativas Adultas/citologia , Proliferação de Células/genética , Leptina/genética , Células-Tronco/citologia , Animais , Animais Recém-Nascidos/genética , Animais Recém-Nascidos/crescimento & desenvolvimento , Diferenciação Celular/genética , Humanos , Camundongos
15.
Andrology ; 8(5): 1428-1441, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32351003

RESUMO

BACKGROUND: In male pre-pubertal cancer patients, radiation and chemotherapy impact future fertility by eradication of spermatogonial stem cells (SSCs). In macaques, spermatogenesis could be regenerated by intratesticular transplantation of SSCs, but only a small percentage of spermatozoa produced were of donor origin. Transient hormone suppression with a GnRH antagonist (GnRH-ant) enhanced spermatogenic recovery from transplanted SSCs. OBJECTIVES: To evaluate donor-derived and endogenous spermatogenic recovery after SSC transplantation into irradiated monkeys and to test whether hormone suppression around the time of transplantation facilitates spermatogenic recovery. MATERIALS AND METHODS: Testes of 15 adult rhesus monkeys were irradiated with 7 Gy and 4 months later transplanted, to one of the testes, with cryopreserved testicular cells containing SSCs from unrelated monkeys. Monkeys were either treated with GnRH-ant for 8 weeks before transplantation, GnRH-ant from 4 weeks before to 4 weeks after transplantation, or with no GnRH-ant. Tissues were harvested 10 months after transplantation. RESULTS: Two of the 15 monkeys, a control and a pre-transplantation GnRH-ant-treated, showed substantially higher levels of testicular spermatogenesis and epididymal sperm output in the transplanted side as compared to the untransplanted. Over 84% of epididymal spermatozoa on the transplanted side had the donor genotype and were capable of fertilizing eggs after intracytoplasmic sperm injection forming morulae of the donor paternal origin. Low levels of donor spermatozoa (~1%) were also identified in the epididymis of three additional monkeys. Transplantation also appeared to enhance endogenous spermatogenesis. DISCUSSION AND CONCLUSION: We confirmed that SSC transplantation can be used for restoration of fertility in male cancer survivors exposed to irradiation as a therapeutic agent. The success rate of this procedure, however, is low. The success of filling the tubules with the cell suspension, but not the GnRH-ant treatment, was related to the level of colonization by transplanted cells.


Assuntos
Células-Tronco Germinativas Adultas/transplante , Espermatogênese/fisiologia , Espermatogônias/transplante , Transplante de Células-Tronco/métodos , Testículo/efeitos da radiação , Animais , Macaca mulatta , Masculino , Lesões Experimentais por Radiação
17.
Urol Clin North Am ; 47(2): 227-244, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32272995

RESUMO

Infertility caused by chemotherapy or radiation treatments negatively impacts patient-survivor quality of life. The only fertility preservation option available to prepubertal boys who are not making sperm is cryopreservation of testicular tissues that contain spermatogonial stem cells (SSCs) with potential to produce sperm and/or restore fertility. SSC transplantation to regenerate spermatogenesis in infertile adult survivors of childhood cancers is a mature technology. However, the number of SSCs obtained in a biopsy of a prepubertal testis may be small. Therefore, methods to expand SSC numbers in culture before transplantation are needed. Here we review progress with human SSC culture.


Assuntos
Células-Tronco Germinativas Adultas/transplante , Preservação da Fertilidade/métodos , Infertilidade Masculina/prevenção & controle , Neoplasias/terapia , Espermatogênese/fisiologia , Células-Tronco Germinativas Adultas/fisiologia , Humanos , Infertilidade Masculina/etiologia , Masculino , Espermatogênese/efeitos dos fármacos , Espermatogênese/efeitos da radiação , Transplante de Células-Tronco/métodos
18.
Fertil Steril ; 113(3): 500-509, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32111477

RESUMO

Since the birth of the first child conceived via in vitro fertilization 40 years ago, fertility treatments and assisted reproductive technology have allowed many couples to reach their reproductive goals. As of yet, no fertility options are available for men who cannot produce functional sperm, but many experimental therapies have demonstrated promising results in animal models. Both autologous (stem cell transplantation, de novo morphogenesis, and testicular tissue grafting) and outside-the-body (xenografting and in vitro spermatogenesis) approaches exist for restoring sperm production in infertile animals with varying degrees of success. Once safety profiles are established and an ideal patient population is chosen, some of these techniques may be ready for human experimentation in the near future, with likely clinical implementation within the next decade.


Assuntos
Técnicas de Reprodução Assistida/tendências , Espermatogênese/fisiologia , Testículo/transplante , Pesquisa Translacional Biomédica/tendências , Animais , Criança , Criopreservação/métodos , Fertilização in vitro , Humanos , Técnicas In Vitro , Infertilidade Masculina/patologia , Infertilidade Masculina/fisiopatologia , Infertilidade Masculina/terapia , Masculino , Espermatozoides
19.
Biol Reprod ; 102(1): 220-232, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31403678

RESUMO

Spermatogonial stem cells (SSCs) undergo continuous self-renewal division in response to self-renewal factors. The present study identified ephrin type-A receptor 2 (EPHA2) on mouse SSCs and showed that supplementation of glial cell-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2), which are both SSC self-renewal factors, induced EPHA2 expression in cultured SSCs. Spermatogonial transplantation combined with magnetic-activated cell sorting or fluorescence-activated cell sorting also revealed that EPHA2 was expressed in SSCs. Additionally, ret proto-oncogene (RET) phosphorylation levels decreased following the knockdown (KD) of Epha2 expression via short hairpin ribonucleic acid (RNA). Although the present immunoprecipitation experiments did not reveal an association between RET with EPHA2, RET interacted with FGFR2. The Epha2 KD decreased the proliferation of cultured SSCs and inhibited the binding of cultured SSCs to laminin-coated plates. The Epha2 KD also significantly reduced the colonization of testis cells by spermatogonial transplantation. EPHA2 was also expressed in human GDNF family receptor alpha 1-positive spermatogonia. The present results indicate that SSCs express EPHA2 and suggest that it is a critical modifier of self-renewal signals in SSCs.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , Receptores da Família Eph/metabolismo , Espermatogônias/metabolismo , Testículo/metabolismo , Células-Tronco Germinativas Adultas/citologia , Animais , Proliferação de Células/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , Camundongos , Fosforilação , Proto-Oncogene Mas , RNA Interferente Pequeno , Receptores da Família Eph/genética , Espermatogônias/citologia
20.
Pediatrics ; 144(3)2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31383814

RESUMO

BACKGROUND: Fertility preservation enables patients undergoing gonadotoxic therapies to retain the potential for biological children and now has broader implications in the care of transgender individuals. Multiple medical societies recommend counseling on fertility preservation before initiating therapy for gender dysphoria; however, outcome data pre- and posttreatment are limited in feminizing transgender adolescents and young adults. METHODS: The University of Pittsburgh Institutional Research Board approved this study. Data were collected retrospectively on transgender patients seeking fertility preservation between 2015 and 2018, including age at initial consultation and semen analysis parameters. RESULTS: Eleven feminizing transgender patients accepted a referral for fertility preservation during this time; consultation occurred at median age 19 (range 16-24 years). Ten patients attempted and completed at least 1 semen collection. Eight patients cryopreserved semen before initiating treatment. Of those patients, all exhibited low morphology with otherwise normal median semen analysis parameters. In 1 patient who discontinued leuprolide acetate to attempt fertility preservation, transient azoospermia of 5 months' duration was demonstrated with subsequent recovery of spermatogenesis. In a patient who had previously been treated with spironolactone and estradiol, semen analysis revealed persistent azoospermia for the 4 months leading up to orchiectomy after discontinuation of both medications. CONCLUSIONS: Semen cryopreservation is a viable method of fertility preservation in adolescent and young adult transgender individuals and can be considered in patients who have already initiated therapy for gender dysphoria. Further research is needed to determine the optimal length of time these therapies should be discontinued to facilitate successful semen cryopreservation.


Assuntos
Criopreservação/métodos , Preservação da Fertilidade/métodos , Disforia de Gênero/terapia , Sêmen , Adolescente , Aconselhamento , Estradiol/uso terapêutico , Estrogênios/uso terapêutico , Feminino , Disforia de Gênero/psicologia , Hormônio Liberador de Gonadotropina/agonistas , Humanos , Masculino , Estudos Retrospectivos , Espironolactona/uso terapêutico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA