Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Exp Pharmacol Physiol ; 49(8): 836-847, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35575958

RESUMO

Antipsychotics are used in the treatment of schizophrenia and other psychiatric disorders. Generally, they are divided into typical and atypical ones, according to the fact that atypical antipsychotics induce fewer side effects and are more effective in terms of social and cognitive improvements. Their pharmacological effects are mediated via broad range of receptors that consequently influence different cellular signalling pathways. Antipsychotics produce undesirable side effects that range from relatively minor to life threatening. In vitro and in vivo studies have pointed to neurotoxic effect exerted by some antipsychotics and have shown that apoptosis might play role in some side effects induced by antipsychotics, including tardive dyskinesia, weight gain, agranulocytosis, osteoporosis, myocarditis, etc. Although cumulative data have suggested safety of atypical antipsychotics use during pregnancy, some of them have been shown to induce apoptotic neurodegenerative and structural changes in fetal brains with long-lasting impact on cognitive impairment of offspring. Typical antipsychotics seem to be more cytotoxic than atypical ones. Recently, epidemiological studies have shown lower incidence of cancer in schizophrenic patients that suggest the ability of antipsychotics to suppress risk of cancer development. Some antipsychotics have been reported to inhibit cancer cell proliferation and induce their apoptosis. Therefore, antipsychotics apoptotic effect may be used as a tool in the treatment of some types of cancer, especially in combinatorial therapies. In this mini-review, we focused on pro- and antiapoptotic or 'Dr. Jekyll and Mr. Hyde' effects of antipsychotics, which can be involved in their side effects, as well as their promising therapeutic indications.


Assuntos
Antipsicóticos , Esquizofrenia , Antipsicóticos/efeitos adversos , Apoptose , Humanos , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico
2.
Endocr Regul ; 55(2): 120-130, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020528

RESUMO

It is apparent that the c-Fos and FosB/ΔFosB immunohistochemistry has generally become a useful tool for determining the different antipsychotic (AP) drugs activities in the brain. It is also noteworthy that there are no spatial limits, while to the extent of their identification over the whole brain axis. In addition, they can be in a parallel manner utilized in the unmasking of the brain cell phenotype character activated by APs and by this way also to identify the possible brain circuits underwent to the APs action. However, up to date, the number of APs involved in the extra-striatal studies is still limited, what prevents the possibility to fully understand their extra-striatal effects as a complex as well as differentiate their extra-striatal impact in qualitative and quantitative dimensions. Actually, it is very believable that more and more anatomical/functional knowledge might bring new insights into the APs extra-striatal actions by identifying new region-specific activities of APs as well as novel cellular targets affected by APs, which might reveal more details of their possible side effects of the extra-striatal origin.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Antipsicóticos/farmacologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Locus Cerúleo/efeitos dos fármacos , Núcleos da Linha Média do Tálamo/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Humanos , Locus Cerúleo/metabolismo , Núcleos da Linha Média do Tálamo/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo
3.
Neuropeptides ; 87: 102148, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33887540

RESUMO

Antipsychotics, including amisulpride (AMI), quetiapine (QUE), aripiprazole (ARI), and olanzapine (OLA), are used to treat mental illnesses associated with psychotic symptoms. The effect of these drugs on c-Fos expression in vasopressinergic (AVP) and oxytocinergic (OXY) neurons was studied in the hypothalamic paraventricular nucleus (PVN) of rats. The presence of c-Fos in AVP and OXY perikarya was investigated in seven PVN cells segregations: the anterior (Ant), dorsal cup (Dc), wing-shaped (Wi), periventricular zone (Pe), circle-shaped core (Co) and shell of core (Sh), and the posterior (pPVN) after an acute treatment with AMI-20 mg/kg, QUE-15 mg/kg, ARI-10 mg/kg, and OLA-5 mg/kg/bw in rats. Ninety min after treatments, the animals were sacrificed by transcardial perfusion with fixative and the PVN area sliced into 35 µm thick coronal sections for immunohistochemistry. The c-Fos was processed by avidin-biotin-peroxidase complex intensified with nickel-enhanced 3,3'-diaminobenzidine tetrahydrochloride. Visualization of AVP- and OXY-synthesizing neurons was achieved by a fluorescent marker Alexa Flour 568. The c-Fos-AVP and c-Fos-OXY colocalizations were evaluated from c-Fos stained sections merged with AVP or OXY ones. AMI, QUE, ARI, and OLA, single administration distinctly increased the c-Fos expression in each of the PVN cells segregations. QUE induced the highest magnitude of activation of AVP and OXY neurons, while OLA and AMI had only moderate effects. Incontestable variabilities detected in c-Fos expression in PVN AVP and OXY neurons extend the knowledge of selected antipsychotics extra-striatal actions and may also be helpful in a presumption of their possible functional impact.


Assuntos
Amissulprida/farmacologia , Antipsicóticos/farmacologia , Aripiprazol/farmacologia , Neurônios/efeitos dos fármacos , Olanzapina/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/biossíntese , Fumarato de Quetiapina/farmacologia , Amissulprida/administração & dosagem , Animais , Antipsicóticos/administração & dosagem , Aripiprazol/administração & dosagem , Corantes Fluorescentes/análise , Regulação da Expressão Gênica/efeitos dos fármacos , Genes fos , Masculino , Neurônios/química , Neurônios/metabolismo , Olanzapina/administração & dosagem , Ocitocina/análise , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Fumarato de Quetiapina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Coloração e Rotulagem , Vasopressinas/análise
4.
Endocr Regul ; 54(1): 43-52, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32597143

RESUMO

OBJECTIVE: Olanzapine (OLA), amisulpride (AMI), aripiprazole (ARI), and quetiapine (QUE) belong to antipsychotics, which administration represents still most reliable way for the treatment of schizophrenic and bipolar disorders. The intention of the present study was to explore whether the acute administration of a particular antipsychotic, indicated by the presence of c-Fos, will: a) stimulate neurons already activated by a long lasting homogeneous or heterogeneous stress preconditioning, indicated by the FosB/ΔFosB (ΔFosB) expression, or b) have a stimulatory effect only on a not activated, so called silent neurons. The pattern of ΔFosB and c-Fos spatial relationship was investigated in three forebrain structures, including the septal ventrolateral nucleus (seVL), the striatal dorsolateral area (stDL), and the shell of the nucleus accumbens (shell). METHODS: The rats were divided into 10 groups and exposed to two types of stressors. Half of them was exposed to a sequence of homogeneous stressor - handling (HDL) and the other half to a heterogeneous stressor (CMS) daily for 20 days. CMS consisted of five types of stressors: crowding, air-puff, wet bedding, predator stress, and forced swimming applied in an unexpected order. On the 21st day of the experiment, the rats were free of the stress exposure and on the 22nd day, both groups of animals receive a single intraperitoneal injection of vehicle (4% DMSO in saline, 0.1 ml/100 g) or OLA (5 mg/kg), AMI (20 mg/kg), ARI (10 mg/kg), and QUE (15 mg/kg). 90 min after the drugs administration the animals were transcardially perfused, brains removed, cut into 30 µm thick coronal sections, and double stained: first with ΔFosB antibody linked with Alexa488 fluorescent dye and second with c-Fos antibody linked to Alexa596 one. Quantitative evaluation of ΔFosB and c-Fos colocalizations was performed on fluorescence photomicrographs transformed into a final picture containing only yellow, green, and red colored circles. RESULTS: The data of this investigation demonstrate that ΔFosB and c-Fos colocalizations occurred in each of the three areas investigated, i.e. seVL, stDL, and shell ones, in both HDL as well as CMS preconditioned rats. The levels of ΔFosB and c-Fos colocalizations varied in the individual forebrain areas studied. From the total 22 areas measured, level of c-Fos colocalization prevailed over ΔFosB in 18 ones. However, neither c-Fos nor ΔFosB reached 100% level of colocalization in any of the forebrain areas investigated. CONCLUSION: The present findings indicate that ΔFosB and c-Fos colocalizations occurred in each of the three areas investigated, i.e. seVL, stDL, and shell, in both HDL and CMS preconditioned rats, whereas the parallel occurrence of free c-Fos as well as c-Fos colocalized with ΔFosB might speak out for a possible involvement of the c-Fos activated by antipsychotics applied in dual, i.e. short- and long-lasting, functions.


Assuntos
Amissulprida/farmacologia , Antipsicóticos/farmacologia , Aripiprazol/farmacologia , Corpo Estriado/efeitos dos fármacos , Olanzapina/farmacologia , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Fumarato de Quetiapina/farmacologia , Núcleos Septais/efeitos dos fármacos , Estresse Psicológico/metabolismo , Amissulprida/administração & dosagem , Animais , Antipsicóticos/administração & dosagem , Aripiprazol/administração & dosagem , Corpo Estriado/metabolismo , Masculino , Olanzapina/administração & dosagem , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fumarato de Quetiapina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Núcleos Septais/metabolismo
5.
Endocr Regul ; 54(2): 77-84, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32597151

RESUMO

OBJECTIVE: The goal of this study was to reveal the impact of four types of atypical antipsychotics including amisulpride (AMI), olanzapine (OLA), quetiapine (QUE), and aripiprazole (ARI), with different receptor-affinity profile and dissociation constant, on the activity of hypothalamic supraoptic nucleus (SON) vasopressinergic and oxytocinergic neurons. METHODS: Male Sprague Dawley rats received a single injection of vehicle (VEH) (0.1 ml/100g), AMI (20 mg/kg), OLA (5 mg/kg), QUE (15 mg/kg/) or ARI (10 mg/kg). Ninety min after treatment, the animals were fixed by transcardial perfusion, the brains removed, and cryocut into serial coronal sections of 35 µm thickness. The sections were processed for c-Fos staining using an avidin-biotin-peroxidase complex and visualized by nickel intensified diaminobenzidine to reach black end product. Afterwards, the sections were exposed to vasopressin (AVP) and oxytocin (OXY) antibodies and the reaction product visualized by biotin-labeled fluorescent Alexa Fluor 568 dye. The data were evaluated from c-Fos and AVP or OXY merged sections. RESULTS: The present study shows that all four antipsychotics applied induced c-Fos expression in the SON. With respect to the stimulation efficacy of the individual antipsychotics, estimated based on the quantity of c-Fos-labeled AVP and OXY neurons, could be a preferential action assigned to QUE over moderate effect of ARI and lower effect to OLA and reduced effect of AMI (VEH < AMI < OLA < ARI < QUE). CONCLUSION: The present data for the first time provide an insight into the quantitative pattern of brain activity within the clusters of SON AVP and OXY cells in response to different atypical antipsychotics single treatment.


Assuntos
Amissulprida/farmacologia , Antipsicóticos/farmacologia , Aripiprazol/farmacologia , Neurônios/efeitos dos fármacos , Olanzapina/farmacologia , Ocitocina , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Fumarato de Quetiapina/farmacologia , Núcleo Supraóptico/efeitos dos fármacos , Vasopressinas , Amissulprida/administração & dosagem , Animais , Antipsicóticos/administração & dosagem , Aripiprazol/administração & dosagem , Masculino , Neurônios/metabolismo , Olanzapina/administração & dosagem , Ocitocina/metabolismo , Fumarato de Quetiapina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Núcleo Supraóptico/metabolismo , Vasopressinas/metabolismo
6.
Endocr Regul ; 53(2): 83-92, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31517626

RESUMO

OBJECTIVE: Prolonged treatment with neuroleptics has been shown to induce FosB/ΔFosB expression in several brain regions including the medial prefrontal cortex, dorsomedial and dorsolateral striatum, ventrolateral and dorsolateral septum, nucleus accumbens shell and core, and the hypothalamic paraventricular nucleus (PVN). Some of these regions are known to be also stress responsive. This study was designed to determine whether repeated clozapine (CLZ) administration for 7 consecutive days to Wistar rats may modify FosB/ΔFosB expression in the above-mentioned brain areas induced by acute stress or novel stressor that followed 13-day chronic mild stress preconditioning. METHODS: Following experimental groups were used: unstressed animals treated with vehicle/ CLZ for 7 days; 7-day vehicle/CLZ-treated animals on the last day exposed to acute stress - forced swimming (FSW); and animals preconditioned with stress for 13 days treated from the 8th day with vehicle/CLZ and on the 14th day exposed to novel stress - FSW. RESULTS: In the unstressed animals CLZ markedly increased FosB/ΔFosB immunoreactivity in the ventrolateral septum and PVN. FSW elevated FosB/ΔFosB expression in the medial prefrontal cortex, striatum, and septum. CLZ markedly potentiated the effect of the FSW on FosB/ΔFosB expression in the PVN, but suppressed it in the dorsomedial striatum. Novel stress with stress preconditioning increased FosB/ΔFosB immunoreactivity in the prefrontal cortex, striatum, ventrolateral septum, and the PVN. In the nucleus accumbens the effect of the novel stressor was potentiated by CLZ. CONCLUSION: Our data indicate that CLZ may modulate the acute as well as novel stress effects on FosB/ΔFosB expression but its effect differs within the individual brain regions.


Assuntos
Clozapina/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estresse Psicológico/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Masculino , Neurônios/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Ratos , Ratos Wistar , Estresse Psicológico/complicações , Estresse Psicológico/patologia , Natação/psicologia
7.
Endocr Regul ; 53(3): 165-177, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31517634

RESUMO

OBJECTIVE: The aim of the present study was to demonstrate the spatial relationship between the c-Fos immunoreactive cells elicited by an acute treatment with neuroleptics including amisulpride (AMI), olanzapine (OLA), quetiapine (QUE), and aripiprazole (ARI) and enkephalinergic (ENK), substance P (SP), and tyrosine hydroxylase (TH) innervation fields in the rat septum. METHODS: Male Sprague Dawley rats received a single injection of OLA (5 mg), ARI (10 mg), AMI (20 mg), QUE (15 mg/kg/b.w.). Ninety min after antipsychotics administration, the animals were transcardially perfused with a fixative and the brains cryocut into serial coronal sections of 35 µm thickness. The sections were processed for c-Fos staining using an avidin-biotin-peroxidase complex and visualized by nickel intensified diaminobenzidine to reach black endproduct. Afterwards, the sections were exposed to ENK, SP, and TH antibodies and the reaction product visualized by biotin-labeled fluorescent AlexaFluor 564 dye. The data were evaluated from the sections either simultaneously illuminated with fluorescent and transmission microscope beams or after merging the separately illuminated sections in the Adobe Photoshop 7.0 software. RESULTS: ENK, SP, and TH displayed characteristic spatial images formed by a dense accumulation of immunoreactive fibers and terminals on the both sides of the septum. A dense plexus of axons formed by ENK and SP immunopositive terminals were situated predominantly in the lateral, while TH ones more medial portion of the septum. QUE and AMI activated distinct amount of c-Fos expression in cells located within the SP-immunoreactive principal innervation field. The OLA effect on the c-Fos expression was very pronounced in the ventral TH-labeled principal innervation field including the space between the ENK field ventral portion and the dorsal margin of the accumbens nucleus shell. Generally, the occurrence of c-Fos cells in the ENK-immunoreactive principal innervation field, in comparison with the surrounding septal area, was less abundant after all of the four antipsychotics treatments. CONCLUSION: The data of the present study indicate that ENK, SP, and TH innervation fields may influence separate populations of septal cells activated by AMI, OLA, QUE, and ARI and that each of these region-differently innervated cells may be associated with the functional heterogeneity of the individual lateral septal nuclei.


Assuntos
Antipsicóticos/farmacologia , Encefalinas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Septo do Cérebro/efeitos dos fármacos , Substância P/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Amissulprida/farmacologia , Animais , Aripiprazol/farmacologia , Imuno-Histoquímica , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Olanzapina/farmacologia , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Fumarato de Quetiapina/farmacologia , Ratos , Ratos Sprague-Dawley , Septo do Cérebro/metabolismo , Distribuição Tecidual/efeitos dos fármacos
8.
Neurochem Int ; 126: 187-194, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30905743

RESUMO

Antipsychotics have been shown to stimulate different forebrain areas, whereas some of them are sensitive to stress. In the present study, effect of a single administration of olanzapine (OLA), amisulpride (AMI), aripiprazole (ARI), and quetiapine (QUE) on the activity of cells in the striatal dorsolateral (stDL) area, the periventricular zone (peVZ), the septal ventrolateral (seVL) nucleus, and the accumbens nucleus shell (shACC) and core (coACC) was investigated in male rats preconditioned with a mild stress complex (CMS) for 20 days. The objective of the study was to extend the anatomical-functional knowledge on the mechanism of selected antipsychotics with the goals: 1) to analyze the ability of the selected antipsychotics to induce c-Fos protein expression in the above mentioned forebrain structures and to map the pattern of their topography and 2) to find out whether longer-lasting mild stress preconditioning may modify the impact of the selected antipsychotics on the activity of cells in the forebrain areas in adult rats. Ten groups of rats were used. CMS complex contained five stressors: cage crowding, air-puff noising, wet bedding, predator stress, and forced swimming. AMI (20 mg/kg), OLA (5 mg/kg), QUE (15 mg/kg), and ARI (10 mg/kg/b.w.) were administered intraperitoneally and 90 min later the animals transcardially perfused by fixative. c-Fos was visualized by ABC complex. In unstressed animals, OLA and ARI elevated c-Fos expression in all areas studied, AMI and QUE in all areas except stDL, seVL and coACC, shACC FL-2 (shACC posterior level), respectively. CMS potentiated the effect of AMI in coACC, and QUE in shACC FL-2 and suppressed the effect of AMI in peVZ, and ARI in peVZ and seVL. The present data provide new insights into activity of cells in response to CMS challenge, which might be helpful in understanding the diverse clinical effects of atypical antipsychotics.


Assuntos
Antipsicóticos/administração & dosagem , Precondicionamento Isquêmico/métodos , Prosencéfalo/metabolismo , Proteínas Proto-Oncogênicas c-fos/biossíntese , Estresse Psicológico/metabolismo , Amissulprida/administração & dosagem , Animais , Aripiprazol/administração & dosagem , Expressão Gênica , Injeções Intraventriculares , Precondicionamento Isquêmico/psicologia , Masculino , Olanzapina/administração & dosagem , Prosencéfalo/efeitos dos fármacos , Fumarato de Quetiapina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/psicologia
9.
J Neurosci Res ; 96(11): 1786-1797, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30144148

RESUMO

Clozapine (CLZ) stimulates several brain areas some of them being sensitive to stress. Aim of the present study was to reveal whether 7-day CLZ administration may: (1) activate the selected forebrain areas; (2) modulate response of these structures to a single forced swimming episode (FSW); (3) modulate response of these structures to FSW after 13-day preconditioning with mild unpredictable stress complex (CMS). Used groups of male Wistar rats: (a) vehicle or CLZ treated for 7 days; (b) vehicle or CLZ treated for 7 days and on the 7th day exposed to FSW; (c) CMS exposed for 13 days, from the 8th day injected with vehicle or CLZ and on the 14th day exposed to FSW. Vehicle or CLZ (10 mg kg-1  day-1 in 0.1% acetic acid) were administered intraperitoneally. c-Fos quantification was performed 90 min after FSW in the medial prefrontal cortex (mPFC), dorsolateral (dLS) and ventrolateral (vLS) septum, dorsolateral (DLStr) and dorsomedial (DMStr) striatum, nucleus accumbens shell (NAc shell) and core (NAc core), and hypothalamic paraventricular nucleus (PVN). In unstressed animals CLZ increased c-Fos expression in the mPFC, vLS, and PVN. After a single FSW, CLZ decreased the number of c-Fos immunoreactive cells in the vLS, DMStr, NAc shell, and NAc core. In CMS rats, CLZ suppressed c-Fos immunoreactivity in response to FSW in the PVN. Our data indicate that CLZ elicits different impact on neuronal activities in the brain areas studied and modifies the response of these structures to stress. CLZ effect seems to be affected by stress duration.


Assuntos
Antipsicóticos/farmacologia , Clozapina/farmacologia , Proteínas Proto-Oncogênicas c-fos/biossíntese , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Animais , Condicionamento Psicológico , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Restrição Física , Natação
10.
Cell Mol Neurobiol ; 38(1): 171-180, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28695319

RESUMO

The impacts of three pyridoindole derivatives (PDs), designated as PD144, PD143, and PD104, which have previously been shown to have antidepressant (PD144) and anxiolytic (PD143, PD104) properties, were investigated on the Fos expressions in 11 different rat brain areas, including the medial prefrontal cortex, striatum, septum, accumbens nucleus (shell, core), bed nucleus of the stria terminalis, hypothalamic paraventricular nucleus, central amygdala, locus coeruleus, dorsal raphe nucleus, and the solitary tract nucleus. Control rats received vehicle, while the other three groups the PDs in a dose of 25 mg/kg/b.w. The animals were transcardially perfused with a fixative 90 min after the treatments. Coronal sections of 40-µm thickness were processed for Fos-immunostaining by avidin-biotin-peroxidase complex and visualized by nickel-intensified diaminobenzidine complex. Fos-labeled sections were counterstained with neuropeptides including corticoliberine (CRH), oxytocin (OXY), vasopressin (AVP), and vasoactive intestinal polypeptide (VIP) and processed for immunofluorescence staining using Alexa Fluor 555 dye. In all the three groups of animals, the upregulation of PDs-induced Fos expression only in 2 of 11 brain areas was investigated, namely, in the hypothalamic paraventricular nucleus (PVN) and the central amygdaloid nucleus (CeA). The other brain structures studied were devoid of Fos expression. Counterstaining of the Fos-labeled CeA-containing sections with VIP antibody revealed that the Fos expression stimulated by the PDs was upregulated in all the CeA subdivisions (lateral, ventral, capsular), except the medial one. Dual immunoprocessings showed Fos/CRH-labeling in both the PVN and the amygdala and Fos/OXY in the PVN. No Fos/AVP colocalizations were seen in the PVN. The obtained data provide the first view on the intracerebral effects of three new PDs derivatives, which effects were restricted only to the PVN and CeA areas. The present data may help to improve our understanding of the impact of the selected PDs on the brain and to anticipate possible behavioral and neuroendocrine consequences.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Indóis/farmacologia , Proteínas Proto-Oncogênicas c-fos/biossíntese , Animais , Expressão Gênica , Indóis/química , Masculino , Proteínas Proto-Oncogênicas c-fos/genética , Ratos , Ratos Wistar
11.
Brain Res Bull ; 127: 29-37, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27542594

RESUMO

Long-term effect of asenapine (ASE), an atypical antipsychotic drug, on FosB/ΔFosB quantitative variations in the striatum, septum, nucleus accumbens, and prefrontal cortex, was light microscopically evaluated in normal rats and rats preconditioned with chronic unpredictable mild stress (CMS). CMS included restraint, social isolation, crowding, swimming, and cold. The rats were exposed to CMS for 21 days. From the 7th day of CMS, the rats were injected subcutaneously with saline (300µl/rat) or ASE (0.3mg/kg b.w.), twice a day for 14 days. On the 22nd day, i.e. 16-18h after the last treatment, the animals were perfused with fixative and the brains cut into 30µm thick coronal sections. FosB/ΔFosB protein was immunohistochemically visualized by avidin-biotin peroxidase complex (ABC). Four groups of animals were investigated: control+vehicle, control+ASE, CMS+vehicle, and CMS+ASE. Repeated ASE treatment significantly increased the amount of FosB/ΔFosB immunostained cell nuclei in the dorsolateral and dorsomedial striatum and the shell of the nucleus accumbens, followed by strVM and coACC, as assessed by numerical analysis in both total (different size for each structure) and unified (equal size for each structure) brain sectors. The effect of ASE was significantly lowered by CMS preconditioning only in the dorsolateral striatum, dorsomedial striatum, and the shell of the nucleus accumbens, indicated by both total and unified calculations. Although, highest FosB/ΔFosB expression was seen in the prefrontal cortex and lowest in the dorsolateral and ventrolateral septum, no differences between the groups occurred. CMS itself did not affect FosB/ΔFosB expression level. These findings demonstrate for the first time that repeated administration of ASE may result in eliciting of long-lasting FosB/ΔFosB-like transcription factors that could mediate some of the persistent and region-specific changes in brain function, interconnected with chronic drug exposure. However, it cannot be excluded that the impact of repeated ASE exposure might be influenced by an ambient stressogen leverage.


Assuntos
Antipsicóticos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Prosencéfalo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estresse Psicológico/tratamento farmacológico , Animais , Temperatura Baixa , Aglomeração , Dibenzocicloeptenos , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Prosencéfalo/metabolismo , Ratos Wistar , Restrição Física , Isolamento Social , Estresse Psicológico/metabolismo , Natação , Incerteza
12.
Stress ; 19(5): 528-34, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27416924

RESUMO

Accumulated evidence indicates that sympathetic nerves may potentiate tumor growth, including melanoma. To elucidate possible mechanisms for this effect, we performed chemical sympathectomy by intraperitoneal (i.p.) injection of the neurotoxin 6-hydroxydopamine hydrobromide (100 mg/kg of body weight); in nine adult male C57BL/6J mice; nine control mice received i.p. vehicle (VEH). Seven days later, all mice were injected subcutaneously with 3 × 10(3) B16-F10 melanoma cells. Mice were euthanized 20 d after injection of melanoma cells, for measurement of tumor weight and expression of genes related to sympathetic signaling, apoptosis, hypoxia and angiogenesis in tumor tissue. To assess potential involvement of the hypothalamo-pituitary-adrenocortical axis in the effect of sympathectomy on melanoma growth, concentrations of plasma corticosterone and level of glucocorticoid receptor mRNA in tumor tissue were determined. We found that sympathectomy significantly attenuated melanoma growth (tumor weight 0.29 ± 0.16 g versus 1.02 ± 0.30 g in controls; p < 0.05). In tumor tissue from sympathectomized mice, we found significantly increased gene expression (measured by real-time PCR), relative to VEH-injected controls, of tyrosine hydroxylase, neuropeptide Y and glucocorticoid receptor (all p < 0.05), and alpha1, beta1 and beta3 adrenergic receptors (all p < 0.025), and factors related to apoptosis (Bcl-2 and caspase-3; p < 0.05) and hypoxia (hypoxia inducible factor 1 alpha) (p = 0.005). Plasma corticosterone concentrations were significantly elevated (p < 0.05) in these mice. Our findings indicate that sympathectomy induces complex changes in the tumor microenvironment reducing melanoma growth. Such complex changes should be considered in the prediction of responses of cancer patients to interventions affecting sympathetic signaling in tumor tissue and its environment.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma Experimental/cirurgia , Sistema Nervoso Simpático/cirurgia , Animais , Apoptose/fisiologia , Caspase 3/metabolismo , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeo Y/metabolismo , Oxidopamina/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Simpatectomia Química , Carga Tumoral , Microambiente Tumoral , Tirosina 3-Mono-Oxigenase/metabolismo
13.
Brain Res Bull ; 108: 60-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25171958

RESUMO

Asenapine (ASE) is a novel atypical antipsychotic drug approved for the treatment of schizophrenia and bipolar disorder. Stress is an inseparable part of the human life, which may interfere with the therapeutic effect of different drugs. The aim of the present study was: (1) to delineate the quantitative and qualitative profiles of the ASE effect on Fos expression in the striatum, septum, nucleus accumbens, and the prefrontal cortex and (2) to find out whether a chronic unpredictable variable mild stress (CMS) preconditioning may modify the effect of acute ASE treatment. Stress paradigms included restrain, social isolation, crowding, swimming, and cold. The animals were exposed to CMS for 21 days and on the 22nd day received an injection of vehicle (saline 300 µl/rat s.c.) or ASE (0.3mg/kg s.c.). They were sacrificed 90 min after the treatments. Fos protein was visualized by avidin biotin peroxidase (ABC). Four groups of animals were investigated: controls+vehicle, controls+ASE, CMS+vehicle, and CMS+ASE. The number of Fos labeled neurons was calculated per total investigated area, which was selective for each structure, and also recalculated per unified sector. ASE treatment induced significant and very similar increase of the Fos expression in both ASE control and ASE CMS animals in comparison with saline control and CMS ones. Moreover, ASE induced regional differences in the number of Fos-positive neurons. In both ASE groups most pronounced response in the number of Fos profiles occurred in the dorsolateral striatum, ventrolateral septum, shell of the nucleus accumbens, and the medial prefrontal cortex. Mild Fos response was seen in the dorsomedial and ventromedial striatum and core of the nucleus accumbens. No response was seen in the dorsolateral septum. The present paper demonstrates for the first time the character of the Fos distribution in the forebrain structures induced by acute ASE treatment as well as ASE response to 21 days CMS preconditioning. The study provides an important comparative background that may help in the further understanding of the effect of ASE on the brain activation as well as its responsiveness to CMS challenges.


Assuntos
Antipsicóticos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Neurônios/efeitos dos fármacos , Prosencéfalo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estresse Psicológico/metabolismo , Animais , Dibenzocicloeptenos , Masculino , Neurônios/metabolismo , Prosencéfalo/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA