Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 485: 116912, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521368

RESUMO

Anthracycline anti-cancer drugs have been widely used in the treatment of several cancers; however, their use is limited by adverse effects (AEs). Alopecia is a common AE that is minimally invasive, but adversely affects mental health and reduces quality of life (QoL). Hand-foot syndrome (HFS) is a dose-limiting AE of DOXIL, a liposomal formulation of doxorubicin (DOX). Although it is not a life-threatening condition, HFS affects function and reduces QoL. TXB-001 is a new candidate polymer-conjugated anthracycline anti-cancer drug, and modified and optimized polymerized pirarubicin (THP), known as P-THP, is expected to have low toxicity and high efficacy. The anti-cancer effects of TXB-001 were examined using the 4T1 mouse model. An alopecia mouse model and HFS rat model were used to evaluate the alopecia- and HFS-inducing effects of TXB-001 and compare their severity with existing anthracycline anti-cancer drugs. A pharmacokinetic analysis of plasma as well as chest, palmar, and plantar skin samples after the single intravenous administration of DOXIL and TXB-001 to rats was also performed. The results obtained revealed that TXB-001 exerted similar anti-cancer effects to those of DOXIL in mice, weaker alopecia-inducing effects than DOX, DOXIL, and THP in mice, and no or markedly weaker HFS-like changes than DOXIL, which induced significant histopathological changes. The results of the pharmacokinetic analysis showed the accumulation of DOXIL, but not TXB-001, in skin, particularly palmar and plantar skin samples, and these differences were considered to contribute to their HFS-inducing effects.


Assuntos
Alopecia , Modelos Animais de Doenças , Doxorrubicina , Doxorrubicina/análogos & derivados , Síndrome Mão-Pé , Camundongos Endogâmicos BALB C , Animais , Alopecia/induzido quimicamente , Alopecia/tratamento farmacológico , Síndrome Mão-Pé/etiologia , Síndrome Mão-Pé/tratamento farmacológico , Doxorrubicina/toxicidade , Feminino , Camundongos , Ratos , Polímeros/química , Polímeros/toxicidade , Antibióticos Antineoplásicos/toxicidade , Ratos Sprague-Dawley , Antraciclinas/toxicidade , Antraciclinas/efeitos adversos , Linhagem Celular Tumoral , Masculino , Antineoplásicos/toxicidade , Polietilenoglicóis
2.
J Toxicol Pathol ; 32(4): 289-292, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31719756

RESUMO

Spontaneous nonneoplastic proliferative lesions of the cardiac hemangioendothelium are extremely rare in humans and animals. Here, we describe a spontaneous hemangioendothelial cell hyperplasia in the heart of a 9-week-old male ICR mouse. The lesion was observed focally in the interventricular septum, with no compression of the surrounding tissues. In the lesion, a single layer of hemangioendothelial cells that had a polygonal shape with enlarged nuclei and plump cytoplasm closely lined surrounding widened capillary vascular spaces and cardiac muscles. There was little cellular atypia, and there were no multilayered endothelial cells. Immunohistochemical staining revealed that these cells were partly positive for factor VIII and CD31, hemangioendothelial cell markers, and negative for Ki-67. These features were consistent with those in aged female B6C3F1 mice in the only report in mice of spontaneous cardiac hemangioendothelial cell hyperplasia. Therefore, this is the first report of spontaneous hemangioendothelial cell hyperplasia in the heart of a young mouse.

3.
Toxicol Sci ; 167(1): 172-189, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30203046

RESUMO

Exposure to environmentally relevant chemicals that activate the xenobiotic receptors aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), and peroxisome proliferator-activated receptor alpha (PPARα) in rodent test systems often leads to increases in oxidative stress (OS) that contributes to liver cancer induction. We hypothesized that activation of the oxidant-induced transcription factor Nrf2 could be used as a surrogate endpoint for increases in OS. We examined the relationships between activation of xenobiotic receptors and Nrf2 using previously characterized gene expression biomarkers that accurately predict modulation. Using a correlation approach (Running Fisher Test), the biomarkers were compared with microarray profiles in a mouse liver gene expression compendium. Out of the 163 chemicals examined, 47% from 53 studies activated Nrf2. We found consistent coupling between CAR and Nrf2 activation. Out of the 41 chemicals from 32 studies that activated CAR, 90% also activated Nrf2. CAR was activated earlier and at lower doses than Nrf2, indicating CAR activation preceded Nrf2 activation. Nrf2 activation by 2 CAR activators was abolished in CAR-null mice. We hypothesized that Nrf2 is activated by reactive oxygen species from the increased activity of enzymes encoded by Cyp2b family members. However, Nrf2 was similarly activated in the livers of both TCPOBOP-treated wild-type and Cyp2b9/10/13-null mice. This study provides evidence that Nrf2 activation (1) often occurs after exposure to xenobiotic chemicals, (2) is tightly linked to activation of CAR, and (3) does not require induction of 3 Cyp2b genes secondary to CAR activation.


Assuntos
Microssomos Hepáticos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenobarbital/toxicidade , Receptores Citoplasmáticos e Nucleares/metabolismo , Xenobióticos/toxicidade , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Biomarcadores/metabolismo , Receptor Constitutivo de Androstano , Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo , Indução Enzimática , Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microssomos Hepáticos/metabolismo , Fator 2 Relacionado a NF-E2/genética , PPAR alfa/genética , PPAR alfa/metabolismo , Fenobarbital/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Xenobióticos/metabolismo
4.
PLoS One ; 13(8): e0200004, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30114225

RESUMO

The transcription factor Nrf2 (encoded by Nfe2l2) induces expression of numerous detoxifying and antioxidant genes in response to oxidative stress. The cytoplasmic protein Keap1 interacts with and represses Nrf2 function. Computational approaches were developed to identify factors that modulate Nrf2 in a mouse liver gene expression compendium. Forty-eight Nrf2 biomarker genes were identified using profiles from the livers of mice in which Nrf2 was activated genetically in Keap1-null mice or chemically by a potent activator of Nrf2 signaling. The rank-based Running Fisher statistical test was used to determine the correlation between the Nrf2 biomarker genes and a test set of 81 profiles with known Nrf2 activation status demonstrating a balanced accuracy of 96%. For a large number of factors examined in the compendium, we found consistent relationships between activation of Nrf2 and feminization of the liver transcriptome through suppression of the male-specific growth hormone (GH)-regulated transcription factor STAT5b. The livers of female mice exhibited higher Nrf2 activation than male mice in untreated or chemical-treated conditions. In male mice, Nrf2 was activated by treatment with ethinyl estradiol, whereas in female mice, Nrf2 was suppressed by treatment with testosterone. Nrf2 was activated in 5 models of disrupted GH signaling containing mutations in Pit1, Prop1, Ghrh, Ghrhr, and Ghr. Out of 59 chemical treatments that activated Nrf2, 36 exhibited STAT5b suppression in the male liver. The Nrf2-STAT5b coupling was absent in in vitro comparisons of chemical treatments. Treatment of male and female mice with 11 chemicals that induce oxidative stress led to activation of Nrf2 to greater extents in females than males. The enhanced basal and inducible levels of Nrf2 activation in females relative to males provides a molecular explanation for the greater resistance often seen in females vs. males to age-dependent diseases and chemical-induced toxicity.


Assuntos
Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Fator de Transcrição STAT5/metabolismo , Animais , Resistência à Doença , Feminino , Hormônios/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/deficiência , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Masculino , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/genética , Oxidantes/efeitos adversos , Caracteres Sexuais , Transcriptoma
5.
Eur J Drug Metab Pharmacokinet ; 42(1): 117-128, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26961540

RESUMO

BACKGROUND AND OBJECTIVE: Beraprost sodium (BPS) is a chemically stable and orally active prostacyclin analog that is used in the treatment of chronic arterial occlusive disease since 1992 and primary pulmonary hypertension since 1999 in Japan. Multiple-drug therapy is common in clinical practice, and BPS is co-administered with other drugs. Membrane transporters are known to markedly affect pharmacokinetics, safety and efficacy, and many transporter-based drug-drug interactions have been recently reported. However, information on the transporters involved in the pharmacokinetics of BPS is limited. METHODS: First of all, we have examined 11 transporters, ABCB1 (P-glycoprotein: P-gp), ABCG2 (breast cancer resistance protein: BCRP), SLC22A6 (organic anion transporter 1: OAT1), SLC22A8 (organic anion transporter 3: OAT3), SLCO1B1 (organic anion transporting polypeptide 1B1: OATP1B1), SLCO1B3 (organic anion transporting polypeptide 1B3: OATP1B3), SLCO2B1 (organic anion transporting polypeptide 2B1: OATP2B1), SLC22A1 (organic cation transporter 1: OCT1), SLC22A2 (organic cation transporter 2: OCT2), ABCB11 (bile-salt export pump: BSEP), and ABCC2 (multidrug resistance associated protein 2: MRP2) to clarify which of them would be candidates that might recognize BPS as their substrate in transporter-expressing LLC-PK1, S2, and HEK293 cells as well as in membrane vesicles. Furthermore, we determined whether the transport of BPS was inhibited by the typical inhibitors of each transporter, i.e., verapamil for P-gp, Ko143 for BCRP, probenecid for OAT3, rifampicin for OATP1B1 and OATP1B3, cyclosporine for BSEP, and sulfobromophthalein (BSP) for MRP2. RESULTS: The results obtained showed that P-gp, BCRP, OAT3, OATP1B1, OATP1B3, BSEP and MRP2 might be candidates for BPS transporters. From the further evaluation with the typical inhibitors of each transporter, it was confirmed that BPS is a substrate for P-gp, BCRP, OAT3, OATP1B1, OATP1B3 and MRP2, because the typical inhibitor, cyclosporine, had no effects on BPS transport by BSEP. CONCLUSIONS: BPS is a substrate of 6 transporters: P-gp, BCRP, OAT3, OATP1B1, OATP1B3, and MRP2, because their expressing cells and vesicles transported BPS more than in the controls, and BPS transport activities were reduced by the typical inhibitors of tested transporters. Although there are no reports regarding drug-drug interactions between BPS and possible combination drugs expected due to transporters, it may be necessary to notice that that substrates or inhibitors for the 6 mentioned transporters may have effects on pharmacokinetics of BPS when co-administered.


Assuntos
Epoprostenol/análogos & derivados , Proteínas de Membrana Transportadoras/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Interações Medicamentosas , Epoprostenol/farmacocinética , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Suínos
6.
PLoS One ; 11(3): e0148308, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26959975

RESUMO

Signal transducer and activator of transcription 5b (STAT5b) is a growth hormone (GH)-activated transcription factor and a master regulator of sexually dimorphic gene expression in the liver. Disruption of the GH hypothalamo-pituitary-liver axis controlling STAT5b activation can lead to metabolic dysregulation, steatosis, and liver cancer. Computational approaches were developed to identify factors that disrupt STAT5b function in a mouse liver gene expression compendium. A biomarker comprised of 144 STAT5b-dependent genes was derived using comparisons between wild-type male and wild-type female mice and between STAT5b-null and wild-type mice. Correlations between the STAT5b biomarker gene set and a test set comprised of expression datasets (biosets) with known effects on STAT5b function were evaluated using a rank-based test (the Running Fisher algorithm). Using a similarity p-value ≤ 10(-4), the test achieved a balanced accuracy of 99% and 97% for detection of STAT5b activation or STAT5b suppression, respectively. The STAT5b biomarker gene set was then used to identify factors that activate (masculinize) or suppress (feminize) STAT5b function in an annotated mouse liver and primary hepatocyte gene expression compendium of ~1,850 datasets. Disruption of GH-regulated STAT5b is a common phenomenon in liver in vivo, with 5% and 29% of the male datasets, and 11% and 13% of the female datasets, associated with masculinization or feminization, respectively. As expected, liver STAT5b activation/masculinization occurred at puberty and suppression/feminization occurred during aging and in mutant mice with defects in GH signaling. A total of 70 genes were identified that have effects on STAT5b activation in genetic models in which the gene was inactivated or overexpressed. Other factors that affected liver STAT5b function were shown to include fasting, caloric restriction and infections. Together, these findings identify diverse factors that perturb the hypothalamo-pituitary-liver GH axis and disrupt GH-dependent STAT5b activation in mouse liver.


Assuntos
Fígado/metabolismo , Fator de Transcrição STAT5/metabolismo , Caracteres Sexuais , Transcriptoma/genética , Animais , Biomarcadores/metabolismo , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Fator de Crescimento Insulin-Like I/metabolismo , Estágios do Ciclo de Vida , Masculino , Camundongos , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fator de Transcrição STAT5/genética
7.
PLoS One ; 11(3): e0150284, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26959237

RESUMO

The growth hormone (GH)-activated transcription factor signal transducer and activator of transcription 5b (STAT5b) is a key regulator of sexually dimorphic gene expression in the liver. Suppression of hepatic STAT5b signaling is associated with lipid metabolic dysfunction leading to steatosis and liver cancer. In the companion publication, a STAT5b biomarker gene set was identified and used in a rank-based test to predict both increases and decreases in liver STAT5b activation status/function with high (≥ 97%) accuracy. Here, this computational approach was used to identify chemicals and hormones that activate (masculinize) or suppress (feminize) STAT5b function in a large, annotated mouse liver and primary hepatocyte gene expression compendium. Exposure to dihydrotestosterone and thyroid hormone caused liver masculinization, whereas glucocorticoids, fibroblast growth factor 15, and angiotensin II caused liver feminization. In mouse models of diabetes and obesity, liver feminization was consistently observed and was at least partially reversed by leptin or resveratrol exposure. Chemical-induced feminization of male mouse liver gene expression profiles was a relatively frequent phenomenon: of 156 gene expression biosets from chemically-treated male mice, 29% showed feminization of liver STAT5b function, while <1% showed masculinization. Most (93%) of the biosets that exhibited feminization of male liver were also associated with activation of one or more xenobiotic-responsive receptors, most commonly constitutive activated receptor (CAR) or peroxisome proliferator-activated receptor alpha (PPARα). Feminization was consistently associated with increased expression of peroxisome proliferator-activated receptor gamma (Pparg) but not other lipogenic transcription factors linked to steatosis. GH-activated STAT5b signaling in mouse liver is thus commonly altered by diverse chemicals, and provides a linkage between chemical exposure and dysregulated gene expression associated with adverse effects on the liver.


Assuntos
Fígado/efeitos dos fármacos , Fígado/metabolismo , Fator de Transcrição STAT5/metabolismo , Transcriptoma/genética , Angiotensina II/farmacologia , Animais , Biologia Computacional , Di-Hidrotestosterona/farmacologia , Feminino , Fatores de Crescimento de Fibroblastos/farmacologia , Glucocorticoides/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Masculino , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Hormônios Tireóideos/farmacologia
8.
Toxicology ; 336: 99-112, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26215100

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the biological and toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), dioxin-like compounds (DLC) as well as some drugs and endogenous tryptophan metabolites. Short-term activation of AhR can lead to hepatocellular steatosis, and chronic activation can lead to liver cancer in mice and rats. Analytical approaches were developed to identify biosets in a genomic database in which AhR activity was altered. A set of 63 genes was identified (the AhR gene expression biomarker) that was dependent on AhR for regulation after exposure to TCDD or benzo[a]pyrene and includes the known AhR targets Cyp1a1 and Cyp1b1. A fold-change rank-based test (Running Fisher's test; p-value ≤ 10(-4)) was used to evaluate the similarity between the AhR biomarker and a test set of 37 and 41 biosets positive or negative, respectively for AhR activation. The test resulted in a balanced accuracy of 95%. The rank-based test was used to identify factors that activate or suppress AhR in an annotated mouse liver/mouse primary hepatocyte gene expression database of ∼ 1850 comparisons. In addition to the expected activation of AhR by TCDD and DLC, AhR was activated by AP20189 and phenformin. AhR was suppressed by phenobarbital and 1,4-Bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) in a constitutive activated receptor (CAR)-dependent manner and pregnenolone-16α-carbonitrile in a pregnane X receptor (PXR)-dependent manner. Inactivation of individual genes in nullizygous models led to AhR activation (Pxr, Ghrhr, Taf10) or suppression (Ahr, Ilst6st, Hnf1a). This study describes a novel screening strategy for identifying factors in mouse liver that perturb AhR in a gene expression compendium.


Assuntos
Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Animais , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Marcadores Genéticos , Ensaios de Triagem em Larga Escala/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Análise Serial de Proteínas , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-26065309

RESUMO

The liver micronucleus assay using young adult rats has the potential to detect liver carcinogens by repeated dosing, and could be expected to be integrated into repeated-dose toxicity studies using a hepatocyte isolation method without the traditional in situ collagenase perfusion. In this study, to assess the performance of the repeated-dose liver micronucleus assay, 2,4-dinitrotoluene (DNT), which is a rodent liver carcinogen, was administered orally to male rats at doses of 50, 100 and 200 mg/kg/day once daily for 14 or 28 consecutive days, and the frequencies of micronucleated hepatocytes (MNHEPs) and micronucleated immature erythrocytes (MNIMEs) were examined. Significant increases in the MNHEPs were observed at 50 mg/kg/day or more in the 14-day treatment, and 50 and 100 mg/kg/day in the 28-day treatment. These increases were dependent on both the dose and the number of administrations, which indicates the possibility that the MNHEPs accumulate as a result of repeated dosing. In contrast, no increase in the MNIMEs was observed. In conclusion, the repeated-dose liver micronucleus assay using young adult rats is sufficiently sensitive to detect the genotoxicity of 2,4-DNT at a low dose.


Assuntos
Carcinógenos/toxicidade , Dinitrobenzenos/toxicidade , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Testes para Micronúcleos , Administração Oral , Animais , Peso Corporal/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Aberrações Cromossômicas/efeitos dos fármacos , Comportamento Cooperativo , Relação Dose-Resposta a Droga , Esquema de Medicação , Hepatócitos/patologia , Humanos , Japão , Fígado/patologia , Masculino , Especificidade de Órgãos , Ratos , Ratos Sprague-Dawley , Reticulócitos/efeitos dos fármacos , Sociedades Farmacêuticas
10.
Nucl Recept Signal ; 13: e002, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25949234

RESUMO

The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher's algorithm (p-value ≤ 10(-4))) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of inflammation including acetaminophen, concanavalin A, lipopolysaccharide, and 300 nm silica particles. In conclusion, we have shown that a CAR biomarker signature coupled with a rank-based similarity method accurately predicts CAR activation. This analytical approach, when applied to a gene expression compendium, increased the universe of known chemicals that directly or indirectly activate CAR, highlighting the promiscuous nature of CAR activation and signaling through activation of other xenobiotic-activated receptors.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/genética , Animais , Biomarcadores/metabolismo , Receptor Constitutivo de Androstano , Avaliação Pré-Clínica de Medicamentos , Feminino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Receptor de Pregnano X , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
PLoS One ; 10(2): e0112655, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25689681

RESUMO

The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents increases liver cancer incidence, whereas suppression of PPARα activity leads to hepatocellular steatosis. Analytical approaches were developed to identify biosets (i.e., gene expression differences between two conditions) in a genomic database in which PPARα activity was altered. A gene expression signature of 131 PPARα-dependent genes was built using microarray profiles from the livers of wild-type and PPARα-null mice after exposure to three structurally diverse PPARα activators (WY-14,643, fenofibrate and perfluorohexane sulfonate). A fold-change rank-based test (Running Fisher's test (p-value ≤ 10(-4))) was used to evaluate the similarity between the PPARα signature and a test set of 48 and 31 biosets positive or negative, respectively for PPARα activation; the test resulted in a balanced accuracy of 98%. The signature was then used to identify factors that activate or suppress PPARα in an annotated mouse liver/primary hepatocyte gene expression compendium of ~1850 biosets. In addition to the expected activation of PPARα by fibrate drugs, di(2-ethylhexyl) phthalate, and perfluorinated compounds, PPARα was activated by benzofuran, galactosamine, and TCDD and suppressed by hepatotoxins acetaminophen, lipopolysaccharide, silicon dioxide nanoparticles, and trovafloxacin. Additional factors that activate (fasting, caloric restriction) or suppress (infections) PPARα were also identified. This study 1) developed methods useful for future screening of environmental chemicals, 2) identified chemicals that activate or suppress PPARα, and 3) identified factors including diets and infections that modulate PPARα activity and would be hypothesized to affect chemical-induced PPARα activity.


Assuntos
Expressão Gênica/efeitos dos fármacos , PPAR alfa/efeitos dos fármacos , Animais , Dieta , Poluentes Ambientais/toxicidade , Feminino , Perfilação da Expressão Gênica , Hepatócitos/metabolismo , Infecções , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , PPAR alfa/metabolismo
12.
Bioorg Med Chem Lett ; 22(15): 5118-22, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22749282

RESUMO

The discovery that pyrazole-benzyl urea derivatives bearing a 2-molpholinopyrimidine moiety are novel p38α inhibitors is described. A comparative view of the binding modes of SB-203580 and BIRB-796 by structural alignment of two X-ray co-crystal structures was utilized to identify this novel series. Modification of the benzyl group led to compound 2b, a highly potent p38α inhibitor. In in vivo studies, 2b inhibited the production of tumor necrosis factor-alpha in lipopolysaccharide-treated mouse in a dose-dependent manner. Furthermore, the results of a 5-day repeated oral dose toxicity study suggest that 2b has low hepatotoxicity.


Assuntos
Desenho de Fármacos , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Pirimidinas/química , Ureia/análogos & derivados , Administração Oral , Animais , Sítios de Ligação , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Imidazóis/química , Imidazóis/metabolismo , Lipopolissacarídeos/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Naftalenos/química , Naftalenos/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/toxicidade , Estrutura Terciária de Proteína , Pirazóis/química , Pirazóis/metabolismo , Piridinas/química , Piridinas/metabolismo , Fator de Necrose Tumoral alfa/sangue , Ureia/síntese química , Ureia/toxicidade
13.
Biopharm Drug Dispos ; 33(5): 257-64, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22581509

RESUMO

Nalfurafine hydrochloride (TRK-820) exhibits strong к-opioid agonistic activity and is a new antipruritic agent for uremic pruritus. This study was performed to identify the human hepatic cytochrome P450 isoforms involved in the metabolic conversion of nalfurafine to the decyclopropylmethylated form, de-CPM, using human liver microsomes and E. coli membrane fractions expressing human P450 isoforms. Samples were analysed by liquid chromatography with a radioactivity detector and liquid chromatography-tandem mass spectrometry. The metabolism of nalfurafine by human liver microsomes exhibited a biphasic kinetic profile. Experiments examining the metabolism by E. coli membrane fractions expressing human P450 isoforms indicated that CYP1A1, 2C8, 2C19 and 3A4 had the ability to produce de-CPM. In experiments with human liver microsomes that examined the inhibition of nalfurafine metabolism by anti-human P450 antibodies, anti-CYP3A4 antibody predominantly, and anti-CYP2C8 and 2C19 antibodies moderately, inhibited de-CPM formation. From these results, CYP3A4 appeared to be the major isoform involved in the metabolic decyclopropylmethylation of nalfurafine, while CYP2C8 and 2C19 most likely play a minor role in the formation of de-CPM.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Morfinanos/metabolismo , Receptores Opioides kappa/agonistas , Compostos de Espiro/metabolismo , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Biotransformação , Membrana Celular/enzimologia , Membrana Celular/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , Técnicas In Vitro , Metilação , Microssomos Hepáticos/enzimologia , Estrutura Molecular , Morfinanos/farmacocinética , Compostos de Espiro/farmacocinética
14.
Mutat Res ; 747(2): 164-75, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22634710

RESUMO

The general aim of the present study is to discriminate between mouse genotoxic and non-genotoxic hepatocarcinogens via selected gene expression patterns in the liver as analyzed by quantitative real-time PCR (qPCR) and statistical analysis. qPCR was conducted on liver samples from groups of 5 male, 9-week-old B6C3F(1) mice, at 4 and 48h following a single intraperitoneal administration of chemicals. We quantified 35 genes selected from our previous DNA microarray studies using 12 different chemicals: 8 genotoxic hepatocarcinogens (2-acetylaminofluorene, 2,4-diaminotoluene, diisopropanolnitrosamine, 4-dimethylaminoazobenzene, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, N-nitrosomorpholine, quinoline and urethane) and 4 non-genotoxic hepatocarcinogens (1,4-dichlorobenzene, dichlorodiphenyltrichloroethane, di(2-ethylhexyl)phthalate and furan). A considerable number of genes exhibited significant changes in their gene expression ratios (experimental group/control group) analyzed statistically by the Dunnett's test and Welch's t-test. Finally, we distinguished between the genotoxic and non-genotoxic hepatocarcinogens by statistical analysis using principal component analysis (PCA) of the gene expression profiles for 7 genes (Btg2, Ccnf, Ccng1, Lpr1, Mbd1, Phlda3 and Tubb2c) at 4h and for 12 genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Gdf15, Lrp1, Mbd1, Phlda3, Plk2 and Tubb2c) at 48h. Seven major biological processes were extracted from the gene ontology analysis: apoptosis, the cell cycle, cell proliferation, DNA damage, DNA repair, oncogenes and tumor suppression. The major, biologically relevant gene pathway suggested was the DNA damage response pathway, resulting from signal transduction by a p53-class mediator leading to the induction of apoptosis. Eight genes (Aen, Bax, Btg2, Ccng1, Cdkn1a, Gdf15, Phlda3 and Plk2) that are directly associated with Trp53 contributed to the PCA. The current findings demonstrate a successful discrimination between genotoxic and non-genotoxic hepatocarcinogens, using qPCR and PCA, on 12 genes associated with a Trp53-mediated signaling pathway for DNA damage response at 4 and 48 h after a single administration of chemicals.


Assuntos
Perfilação da Expressão Gênica , Fígado/efeitos dos fármacos , Mutagênicos/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Animais , Carcinógenos/toxicidade , Princípio do Duplo Efeito , Injeções Intraperitoneais , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Masculino , Camundongos
15.
J Appl Toxicol ; 31(8): 790-800, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21319176

RESUMO

Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a herbal medicine extracted from the rhizomes of Rheum palmatum, and is known as an inhibitor of casein kinase II (CK2). The CK2α' knockout mice are known to be male-infertile; however, there have been no reports on the toxicity of emodin in male reproductive organs/tissues. To evaluate the toxicological effects of emodin on differential gene expression profiles of the testis as compared with acrylamide, mice were orally administered emodin and acrylamide for 5 days at a dose of 1000 and 50 mg kg(-1) per day, respectively, and euthanized 24 h after the final administration. Both chemicals induced hypospermatogenesis, eosinophilic change and apoptosis of germ cell. A DNA microarray analysis showed that the IGF-1 receptor signaling was most closely related to the above testicular toxicity induced by emodin, and the RhoA regulation, TGF/WNT and cytoskeletal remodeling, TNFR1 signaling and adenosine A2A receptor signaling were commonly associated with the two chemicals. We selected 36 genes associated with CK2, apoptosis and spermatogenesis and determined their expression by quantitative reverse transcription-polymerase chain reaction (qPCR). Both chemicals perturbed the expression of genes associated with CK2. Genes related to spermatogenesis were also affected, as evidenced by hypospermatogenesis, and eosinophilic change and apoptosis of germ cell. The results suggest that emodin causes testicular toxicity, including apoptosis with related the IGF-1 receptor signaling pathway, and the two chemicals commonly affect CK2, spermatogenesis and sperm motility via four pathways, such as TNFR1 signaling.


Assuntos
Emodina/toxicidade , Perfilação da Expressão Gênica/métodos , Extratos Vegetais/toxicidade , Testículo/efeitos dos fármacos , Acrilamida/toxicidade , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Medicina Herbária , Imuno-Histoquímica/métodos , Marcação In Situ das Extremidades Cortadas/métodos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Análise de Sequência com Séries de Oligonucleotídeos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Rheum/química , Transdução de Sinais/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Testículo/metabolismo
16.
Mutat Res ; 698(1-2): 30-7, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20188853

RESUMO

We have been investigating a liver micronucleus assay to detect genotoxic chemicals using young rats for several years, and had established its advantages with respect to using autonomous proliferation of young rat hepatocytes. Nine chemicals known to induce hepatotoxic effects such as necrosis (2,6-dinitrotolune, bromobenzene, isoniazid, phenacetin, allyl alcohol and thioacetamide), cholestasis (chlorpromazine hydrochloride and alpha-naphthyl isothiocyanate) and oxidative stress (clofibrate) were selected for this study. A liver micronucleus assay was conducted in 4-week-old male F344 rats using two or three dose levels of test chemicals given orally by gavage to evaluate the compound's ability to induce micronucleated hepatocytes. Several of these test chemicals were additionally examined in a peripheral blood micronucleus assay conducted concurrently and in the same animals. The genotoxic rodent hepatocarcinogen, 2,6-dinitrotoluene showed a positive result in the liver micronucleus assay, but the nongenotoxic hepatocarcinogens, clofibrate and thioacetamide gave negative responses. Bromobenzene, known to produce DNA adducts but is noncarcinogenic in rodent liver, was judged equivocal in this assay. alpha-Naphthyl isothiocyanate is noncarcinogenic and showed negative response in the liver. The other four chemicals, known to be either noncarcinogenic or carcinogenic in other non-liver target organs, showed negative results in the liver micronucleus assay. Based on the results in the present study and previous report described above, it was concluded that this technique is able to effectively predict genotoxic rodent hepatocarcinogenicity, and does not give false positives due to hepatotoxicity.


Assuntos
Carcinógenos/toxicidade , Fígado/efeitos dos fármacos , Testes para Micronúcleos/métodos , Fatores Etários , Animais , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Endogâmicos F344
17.
Mutat Res ; 698(1-2): 24-9, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20188854

RESUMO

A collaborative study was conducted to evaluate whether a liver micronucleus assay using four-week-old male F344 rats can be used to detect genotoxic rat hepatocarcinogens using double-dosing with a single-sampling 4 days after the second dose. The assay methods were thoroughly validated by the seven laboratories involved in the study. Seven chemicals, 2,4-diaminotoluene, diethyl nitrosamine, p-dimethylaminoazobenzene, 1,2-dimethylhydrazine dihydrochloride, 2,4-dinitrotolunene, 2,6-dinitrotoluene and mitomycin C, known to produce positive responses in the single-dosing/triple-sampling method were selected for use in the present study, and each chemical was examined in two laboratories with the exception of 2,4-dinitrotolunene. Although several of the compounds were examined at lower doses for reasons of toxicity than in the single-dosing/triple-sampling method, all chemicals tested in the present study induced micronuclei in liver cells indicating a positive result. These findings suggest that the liver micronucleus assay can be used in young rats to detect genotoxic rat hepatocarcinogens using a double-dosing/single-sampling procedure. Further, the number of animals used in the liver micronucleus assay can be reduced by one-third to a half by using the double-dosing/single-sampling method. This reduction in animal numbers also has significant savings in time and resource for liver perfusion and hepatocyte isolation.


Assuntos
Carcinógenos/toxicidade , Fígado/efeitos dos fármacos , Testes para Micronúcleos/métodos , Fatores Etários , Animais , Masculino , Ratos , Ratos Endogâmicos F344
18.
J Toxicol Sci ; 33(5): 515-24, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19043273

RESUMO

The single cell gel electrophoresis (comet) assay is a simple and effective method for detecting DNA damage in cells with or without the capability of cell division. Methyl methanesulfonate (MMS), as a genotoxic compound that reacts with DNA directly, was confirmed for its DNA damage potential by in vivo comet assay in multiple organs such as liver, kidneys and bone marrow in mice and acetaminophen (APAP), a widely used analgesic drug, was evaluated for whether it possesses DNA damage potential or not. Furthermore, cytotoxicity was verified by hematology and /or blood chemistry simultaneously. Male Crj:CD1(ICR) mice were intraperitoneally once treated with MMS at 50, 100, and 150 mg/kg, and APAP at 12, 60, and 300 mg/kg. These organs were collected at 4 and 24 hr after treatment, and the comet assay was performed concomitantly with hematology and/or blood chemistry. The results showed that MMS induced a significant concentration-dependent increase in the frequency of tailed nuclei (DNA damage), tail moment, % DNA in the tail, and tail length in the liver, kidneys and bone marrow at both time points. With regard to hematology and blood chemistry results, nephrotoxic markers were not changed, but aspartate aminotransferase (AST) and alanine aminotransferase (ALT) increased in the 150 mg/kg-treated group, and bone marrow counts (BMC) decreased in all of the treatment groups 24 hr after treatment. These results suggested that DNA damage observed in the kidneys was due to genotoxicity, not nephrotoxicity. The DNA damage was more severe at 4 hr than 24 hr after treatment. This might indicate that the decrease in DNA damage was due to detoxification, repair of the lesions induced by the treatment, or cell turnover, all of which would reduce cellular damage. On the other hand, APAP induced increases in plasma AST and ALT levels in the highest dose group only, and the DNA damage in the liver increased at the same dose. These results suggest that the in vivo comet assay might be used to detect the DNA damage induced by MMS and the subsequent DNA repair in mouse liver, kidneys and bone marrow. APAP at the highest dose induces DNA damage in liver. Blood chemical results may indicate that the DNA damage by APAP treatment was attributable to hepato-cytotoxicity, because DNA damage and hepato-cytotoxicity were detected at the same doses.


Assuntos
Acetaminofen/toxicidade , Biomarcadores/sangue , Medula Óssea , Dano ao DNA , Rim , Fígado , Metanossulfonato de Metila/toxicidade , Mutagênicos/toxicidade , Animais , Contagem de Células Sanguíneas , Análise Química do Sangue , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Medula Óssea/patologia , Ensaio Cometa , Interpretação Estatística de Dados , Relação Dose-Resposta a Droga , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA